146 research outputs found

    Parametrizable cameras for 3D computational steering

    Get PDF
    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical manner. Each view can be coupled to objects present in the interface, parametrized to (simulation) data, or adjusted through direct manipulation or user defined camera controls. Although our focus is on 3D interfaces for computational steering, we think that the concept is valuable for many other 3D graphics applications as well

    3D computational steering with parametrized geometric objects

    Get PDF
    Computational Steering is the ultimate goal of interactive simulation: researchers change parameters of their simulation and immediately receive feedback on the effect. We present a general and flexible graphics tool that is part of an environment for Computational Steering developed at CWI. It enables the researcher to interactively develop his own interface with the simulation. This interface is constructed with 3D Parametrized Geometric Objects. The properties of the objects are parametrized to output data and input parameters of the simulation. The objects visualize the output of the simulation while the researcher can steer the simulation by direct manipulation of the objects. Several applications of 3D Computational Steering are presented

    Computational steering

    Get PDF
    The traditional cycle in simulation is to prepare input, execute a simulation, and to visualize the results as a post-processing step. However, more insight and a higher productivity can be achieved if these activities are done simultaneously. This is the underlying idea of Computational Steering: researchers change parameters of their simulation on the fly and immediately receive feedback on the effect. In this paper the Computational Steering Environment, CSE, developed at CWI is described. We discuss the requirements of computational steering environment, its relation with high performance computing and networking, and show an application of its use

    Bringing computational steering to the user

    Get PDF
    Computational steering is a technique that combines simulation and visualization. The user is continuously provided with visual feedback about the state of the simulation, and can change parameters on the fly. Designers can vary parameters to optimize their product, users can detect errors in the input early, researchers can do qualitative sensitivity analyses easily. The implementation of computational steering is very tedious. It requires knowledge of the simulation, visualization, user interfacing, and data communication. In this paper we discuss an environment that enables users to implement and use computational steering effectively without much support from user interface experts. We show how the environment is applied to various applications

    Bringing computational steering to the user

    Get PDF
    Computational steering is a technique that combines simulation and visualization. The user is continuously provided with visual feedback about the state of the simulation, and can change parameters on the fly. Designers can vary parameters to optimize their product, users can detect errors in the input early, researchers can do qualitative sensitivity analyses easily. The implementation of computational steering is very tedious. It requires knowledge of the simulation, visualization, user interfacing, and data communication. In this paper we discuss an environment that enables users to implement and use computational steering effectively without much support from user interface experts. We show how the environment is applied to various applications

    Gravitational non-commutativity and G\"odel-like spacetimes

    Full text link
    We derive general conditions under which geodesics of stationary spacetimes resemble trajectories of charged particles in an electromagnetic field. For large curvatures (analogous to strong magnetic fields), the quantum mechanicical states of these particles are confined to gravitational analogs of {\it lowest Landau levels}. Furthermore, there is an effective non-commutativity between their spatial coordinates. We point out that the Som-Raychaudhuri and G\"odel spacetime and its generalisations are precisely of the above type and compute the effective non-commutativities that they induce. We show that the non-commutativity for G\"odel spacetime is identical to that on the fuzzy sphere. Finally, we show how the star product naturally emerges in Som-Raychaudhuri spacetimes.Comment: Two sections added (Relation to the fuzzy sphere, Emergence of the star product). 10 pages, Revtex. To appear in General Relativity and Gravitatio

    Video: Adding to Your Case: Examining and Cross Examining Expert Witnesses

    Get PDF
    Learn skills for using expert witness testimony at trial: Developing strategy for selecting topics and order of presentation Using proper form of questioning on direct and cross Understanding rules of evidence, procedure, and ethics Two role play demonstrations help you learn technique

    Four forage sorghum silage additives evaluated

    Get PDF
    Two trials were conducted to evaluated four forage sorghum silage additives: ammonium iso-butyrate, aureomycin, sodium hydroxide, and a mixture of acetic and propionic acids. A control silage received no additives
    • …
    corecore