
Computational Steering

Robert van Liere

Centrum voor Wiskunde en Informatica

P�O� Box ������ ���� GB Amsterdam

The Netherlands

E-mail: robertl@cwi.nl

Jurriaan D� Mulder

Centrum voor Wiskunde en Informatica

P�O� Box ������ ���� GB Amsterdam

The Netherlands

E-mail: mullie@cwi.nl

Jarke J� van Wijk

Netherlands Energy Research Foundation ECN

P�O� Box �� ��		 ZG Petten

The Netherlands

Centrum voor Wiskunde en Informatica

P�O� Box ������ ���� GB Amsterdam

The Netherlands

E-mail: vanwijk@ecn.nl

Abstract

The traditional cycle in simulation is to prepare input� execute a simulation� and to visualize the results as a

post�processing step� However� more insight and a higher productivity can be achieved if these activities are

done simultaneously� This is the underlying idea of Computational Steering� researchers change parameters

of their simulation on the �y and immediately receive feedback on the e�ect�

In this paper the Computational Steering Environment� CSE � developed at CWI is described� We discuss

the requirements of computational steering environment� its relation with high performance computing and

networking� and show an application of its use�

CR Subject Classification (1991): I���	� I���

Keywords & Phrases: computational steering� scienti�c visualization� three�dimensional graphics and in�

teraction

Note: This paper was presented at the HPCN Europe �
� April �
���� Brussel

1. INTRODUCTION

Scientific Visualization has been a research area since 1987, when the influential report of the US
National Science Foundation was published [1]. Since then many new methods, techniques, and
packages have been developed. Most of these developments are focussed on post-processing of
data-sets. Usually the assumption is made that all data is generated first, after which the researcher
iterates through the remaining steps of the visualization pipeline (selection, filtering, mapping, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Requirements 2

rendering) to achieve insight in the generated data. Hence, with post-processing the interaction with
the simulation is limited.

Computational steering is a form of scientific visualization that is quite different than post-
processing and can be considered as the ultimate goal of interactive computing. Computational
steering enables the researcher to change parameters of the simulation while the simulation is in
progress. As an example, Marshall of the Ohio Supercomputer Center has applied computational
steering to the study of a 3D turbulence model of Lake Erie [2]. Their conclusions were: "Inter-
action with the computational model and the resulting graphics display is fundamental in scientific
visualization. Steering enhances productivity by greatly reducing the time between changes to model
parameters and the viewing of the results."

Computational steering has a strong relation with high performance computing and networking.
First, to gain insight in the ever increasing complexity of high performance simulations, post pro-
cessing falls short and more advanced methods, i.e. computaional steering, are needed. Second, high
performance computing is needed to execute simulations and rendering at interactive speeds. High
bandwidth and low latancy networks are needed to handle the amount of data produced by simulations
interactively. If interactive speeds cannot be obtained, then computational steering will lose most of
its value.

Computational steering is an attractive concept, but its implementation is cumbersome. A re-
searcher must cooperate with a specialist in user-interfaces and visualization to develop a tool for the
analysis of the output of the simulation. When the tool is ready, after some weeks or months, chances
are high that interests of the researcher have shifted. Also, the further analysis of the data will intro-
duce new research questions, which induce modifications of the tool. The close cooperation between
researcher and the visualization specialist for an extended period is required. More appropriate would
be to provide an environment in which researchers themselves can build interfaces and visualizations
to the simulation. This would result in a more effective and efficient model – simulate – analysis
cycle.

The CSE is a software environment for computational steering [3]. The CSE provides a collection
of methods, techniques, and tools that enable researchers to apply computational steering. First, a
number of requirements which we believe are fundamental for a steering environment are given. We
then present the key concepts of the CSE ’s architecture and the tools provided for the visualization
of and interaction with the data. Finally, an application is discussed as an illustration of the use of the
CSE .

2. REQUIREMENTS

Consider figure 1, which depicts the data-flow between a researcher and simulation via a CSE . A
number of requirements for a steering environment can be given. First, the researcher enters new
values for parameters, and views visualizations of the resulting data. Hence, input widgets such
as text-fields, sliders, buttons, as well as a variety of visualization methods, such as graphs, text,
graphics objects, etc. must be provided. Graphical objects must be provided that allow for two-way
communication: both input and output. It must be possible to select and drag visualization objects,
thereby directly controlling parameters and state variables of the simulation.

The simulation receives from the CSE new parameter values, and returns newly calculated results
to the CSE . We assume that the simulation can handle changes of parameters on the fly, and that it can

�� Computational Steering Environment 3

Computational Steering Environment

parameters results

visualization
graphical

input

direct

manipulation

state

variables

Researcher

Simulation

Figure 1: Data flow between researcher, CSE, and simulation.

provide meaningful intermediate results within a time-interval that is acceptable to the researcher.

The process of achieving insight via simulation is an incremental one. The researcher must be
able to create and refine the interface to the simulation easily and incrementally. For all stages
of the visualization pipeline (from simulation to rendering) the cycle specification, implementation,
application is continuously reiterated.

The architecture of the CSE must be modular. There are two reasons for this: First, it must be
possible to integrate existing tools, e.g., a special purpose package for grid-editing, in the CSE .
Second, simulations usually execute on remote compute servers. Modular architectures simplify
embedding simulations in the CSE .

The final requirement concerns the underlying data model and the amount of data movement within
the CSE . The type of data to be handled depends very much on the type of simulation, and therefore
can vary from simple scalar data to large, three-dimensional, time-dependent vector and tensor field
data-sets. The underlying data model must be flexible enough to support a wide range of data types.
Also, due to the quantity of data output from the simulation, the CSE must be able to handle large
data sets efficiently.

3. COMPUTATIONAL STEERING ENVIRONMENT

3.1 Architecture
An overview of the architecture of the CSE is shown in figure 2. The architecture is centered around
a Data Manager that acts as a blackboard for communicating values. Separate processes (satellites)
can connect to the Data Manager and exchange data with it. The simulation is packaged as a satellite.

The purpose of the data manager is twofold. First, it manages a database of variables. Satellites can
create, open, close, read, and write variables. For each variable the data manager stores a name, type,
and value. Second, the data manager acts as an event notification manager. Satellites can subscribe
to state changes in the data manager. When such a state change occurs the satellite will receive a
notification from the data manager. For example, if a satellite subscribes to mutation events on a
particular variable, the data manager will send a notification to that satellite whenever the value of
the variable is mutated.

�� Computational Steering Environment 4

Researcher

PGO editor

text drag pick visualization

data

Data Manager

Simulation

data

 Selection

 Satellite

 Calculator

 Satellite
 . . .

data data data

selection expression

Figure 2: The CSE architecture

The kernel of the CSEarchitecture consists of the data manager and low level libraries that can access
this functionality. The kernel is designed to be very simple, flexible and minimalistic. Unique in the
CSE architecture is that higher level system functionality is pushed into satellites and not implemented
in the kernel [4]. For example, a synchronization management satellite has been developed which
allows visual specification of triggering and synchronization criteria between satellites. Another
example of a system satellite is the transfer tuple satellite, which allows for efficient data transfer
between two data managers.

Communication of a satellite with the Data Manager is done via a small Application Programmers
Interface (API). The abstractions used are similar to standard UNIX I/O file handling, with variables
instead of files. The functionality provided by this API is compact, terse and complete, but not simple
to use. Therefore, on top of this interface a Data I/O library was defined, which is tuned to the needs
of researchers that want to integrate their simulations within the CSE . The Data I/O library is simple
to use and hides the complexities of the low level interface.

A large collection of general purpose visualization and data manipulation satellites have been
built. Examples are satellites that implement data slicing, logging, calculation, transformation, and
annotation.

3.2 Parameterized Graphics Objects
The most predominant satellite is the PGO editor, an interactive, MacDraw-like, graphics editing tool.
There are two versions of the graphics editing tool, a 2D and a 3D version [5]. The central concept of
the graphics editor is the Parametrized Graphics Object (PGO) : an interface is built up from graphics
objects whose properties are functions of data in the data manager. The PGO editor has two modes:
specification and application, or edit and run. In edit mode, the researcher can edit graphics objects
and parameterize their geometry and attributes with variable names in the data manager. Hence, in
edit mode, the researcher sketches a specification of the interface. In run mode, a two-way binding is
established between the graphics objects and variable names in the data manager. Simulations may
steer the interface by mutating the data bound to the graphics objects. Similarly, researchers drive
the simulation by manipulating graphics objects. Hence, in run mode, a two-way communication
between graphics and data in the simulation is realized.

As a simple example of how one would use the PGO editor, consider the left side of figure 3, which
depicts the specification of an arrow. The right side shows that application of the arrow, after being

�� Atmospheric Simulation Application 5

bound to an array of values in the data manager. The arrow could for instance be used to steer a field
force in the simulation. Its length would then be parametrized to the magnitude of the force while its
orientation would depict the direction of the force.

Figure 3: Arrow in edit mode (left) and run mode (right).

Libraries of predefined widgets which are customized towards specific application needs can be
made available. In addition, the 3D PGO editor provides techniques that simplify 3D interaction with
graphics objects. Two examples are the 3D crosshair cursor and shadow editing. The crosshair cursor
provides the user with fine control over the positioning and translating of points and objects in 3D
space. Shadow editing allows the user to interact with the orthogonal projections (shadows) of the
objects on a bounding box. An example of shadow editing is shown in figure 3.

4. ATMOSPHERIC SIMULATION APPLICATION

The CSE has been applied to the simulation of a model for smog prediction over Europe 1. The
full blown model forecasts the levels of air pollution, which is characterized by approximately 104
reactions between ca. 70 species. For example, the concentrations of ozone (O 3), sulphur dioxide
(SO 2) and sulphate aerosol (SO 4) are calculated. The vertical stratification is modeled by four
layers; the surface layer, the mixing layer, the reservoir layer, and the upper layer. The computational
model is described by a set of partial differential equations that model advection, diffusion, emission,
wet and dry deposition, fumigation, and chemical reactions.

An important numerical utility to solve these equations is local grid refinement [6]. This technique
is used to improve the quality of the model calculations in areas with large spatial gradients (for
example in regions with strong emissions). The trade off to be made in local grid refinement is
calculation accuracy versus computation speed. The CSE has been used to steer various aspects of
the smog prediction simulation:

� Control of the tolerance value that determines where refinement is necessary;

� Editing of emission data;

1Thanks to M. van Loon and J.G. Verwer of the Afdeling Numerieke Wiskunde, CWI for providing all information and
code of this application.

	� Discussion 6

� Use of a bounding box as a concentration probe; The coordinates of the bounding box steer the
slicing satellite, which in turn triggers the calculator and logging satellites. The result of the
logging satellite triggers the PGO editor;

� Interactive control over simulation time.

$HOUR
$date

$cmax

$cmin

show grid hide grid

SO2

SO4

NOx

Ox

NO3

Component

Layer

1

2

3

4

Numerical Smog Prediction

$stratlayer

$long

$lat

$compname

ug / m3

Numerics Emission

SOx NOx

tolerance
$TOL

Number of refinment pnts $npts

Concentration Probe

Wind Field

On Off

Max Courant Number $MAXNU

Total avg: $avgConcProbe avg: $avgC

x_0

y_0

x_1

y_1

x_2

y_2

x_3

y_3

x_4

y_4

x_5

y_5

x_6

y_6

x_7

y_7

x_8

y_8

x_9

y_9

x_10

y_10

x_11

y_11

x_12

y_12

x_13

y_13

x_14

y_14

x_15

y_15

x_16

y_16

x_17

y_17

x_18

y_18

x_19

y_19

x_20

y_20

x_21

y_21

x_22

y_22

x_23

y_23

x_24

y_24

x_25

y_25

x_26

y_26

x_27

y_27

x_28

y_28

x_29

y_29

x_30

y_30

x_31

y_31

x_32

y_32

x_33

y_33

x_34

y_34

x_35

y_35

x_36

y_36

x_37

y_37

x_38

y_38

x_39

y_39

x_40

y_40

x_41

y_41

x_42

y_42

x_43

y_43

baseX

baseY

basedx

basedy

levelX

levelY

leveldx

leveldy

UX

UY

Ux
Uy

comp

cannot

layer

long

lat

npts_x

npts_t

TOL

xlo

ylo

xhi

yhi

MAXNU_x

MAXNU_t

baseX

baseY

basedx

basedy

avgC_x

avgC_t

avgC_x

avgConc_t

dt
12.0
Saturday 27 March 1993

279.8

0.2

show grid hide grid

SO2

SO4

NOx

Ox

NO3

Component

Layer

1

2

3

4

Numerical Smog Prediction

upper

0

-10

-20

20100

Ox

ug / m3

Numerics Emission

SOx NOx

tolerance
0.394

Number of refinment pnts 622

Concentration Probe

Wind Field

On Off

Max Courant Number 1.1

Total avg: 24.233Probe avg: 60.3

dt = 0.5

Figure 4: Smog prediction simulation: edit mode (left) and run mode (right)

The left of figure 4 shows a snapshot of the PGO editor in edit mode, the right shows a snapshot in
run mode. The concentration of ozone in the upper layer is shown in color along with areas of local
grid refinement (shown as smaller rectangles). The wind field is shown as small black vectors.

This set-up enables a numerical mathematician to gain insight in the relationship between grid
refinement tolerance, the maximal Courant number, and the simulation time. Sliders control the grid
refinement tolerance and simulation time. The graph on the lower left shows a log of the number of
grid cells that are refined and the maximum Courant number. The dmlog satellite records the data
for display. The graph immediately displays the effects of changes on the tolerance or the simulation
time.

This particular configuration runs at approximately five frames a second on a modern workstation.
The amount of data involved is substantial: depending on tolerance level, the amount of data may vary
between one and four megabytes per time step. The simulation has 447 time steps. Approximately
90 percent of the CPU time was taken by the simulation. The remaining 10 percent was used by the
other satellites and data transport in the CSE .

5. DISCUSSION

In this paper we presented the requirements and design of the CSE , an environment for computational
steering. The design of the CSE ’s architecture was driven by the following basic concepts:

� The use of low-level primitives: a simple data model and graphics objects. The interfaces to
these primitives are familiar to the end-user: a simple I/O library for data manipulation and the

REFERENCES 7

PGO editor for graphics.

� No higher level semantics are defined in the kernel. As a result, the environment is general
and flexible. High level features are built on top of the kernel by putting this functionality into
satellites. By pushing high level functionality into satellites, the CSE provides an environment
that is extensible and reuseable.

� The data manager, the PGO editor and all other satellites rely on late binding of named variables.
As a result, it is possible to iteratively define new visualizations or define different bindings to
output data.

� All operations in the data manager and satellites are based entirely on data. For example,
in the PGO editor, dragging, picking and text input are translated into changes of data. The
predominant type of event within the CSE is the data mutation.

The CSE currently runs on SGI, Sun, DEC Alpha, HP, Cray YMP and IBM SP1 platforms. The
CSE uses the device independent graphics package OpenGL for the 3D and X11 for 2D version of
the PGO. It uses TCP/IP for transport on Ethernet or ATM networks.

As computational models become more complex, researchers have an increasing need for interactive
tools in which computational models can be explored in more effective ways. From our experience
we believe that CSE offers a powerful, though basic, platform for computational steering of high
performance simulations.
REFERENCES

1. B. McCormick, T. Defanti, and M. Brown. Visualization in Scientific Computing. Computer
Graphics (SIGGRAPH ’88), 22(6):103–111, 1987.

2. R.E. Marshall, J.L. Kempf, D. Scott Dyer, and C-C Yen. Visualization Methods and Simulation
Steering a 3D Turbulence Model of Lake Erie. 1990 Symp. on Interactive 3D Graphics, Computer
Graphics, 24(2):89–97, 1990.

3. J.J. van Wijk and R. van Liere. An Environment for Computational Steering. Technical Report
CS-R9448, Centre for Mathematics and Computer Science (CWI), 1994. Presented at the Dagstuhl
Seminar on Scientific Visualization, 23-27 May 1994, Germany, proceedings to be published.

4. R. van Liere and J.J. van Wijk. CSE : A Modular Environment for Computational Steering. Tech-
nical report, Centre for Mathematics and Computer Science (CWI), 1995. publication pending.

5. J. Mulder and J.J. van Wijk. 3D Computational Steering with Parameterized Geometric Objects.
In Proceedings Visualization ’95, pages 304–311. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

6. M. van Loon. Numerical smog prediction: Grid refinement. Technical Report NW-R9448, Centre
for Mathematics and Computer Science (CWI), 1994.

