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Abstract 

The traditional cycle in simulation is to prepare input, execute a simulation, and to visualize the results as 
a post-processing step. However, more insight and a higher productivity can be achieved if these activities are done 
simultaneously. This is the underlying idea of computational steering: researchers change parameters of their simulation on 
the fly and immediately receive feedback on the effect. 

In this paper the computational steering environment, CSE, is described. We discuss the requirements of computational 
steering environment, its relation with high performance computing and networking, and show an application of its use. 
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1. Introduction 

Scientific visualization has been a research area 
since 1987, when the influential report of the US 
National Science Foundation was published [1]. 
Since then many new methods, techniques, and 
packages have been developed. Most of these devel­
opments are focussed on post-processing of data 
sets. Usually the assumption is made that all data 
are generated first, after which the researcher iter­
ates through the steps of the visualization pipeline 
(selection, filtering, mapping, and rendering) to 
achieve insight into the generated data. Hence, with 
post-processing the interaction with the simulation 
is limited. 

• Corresponding author. 
1 Partially supported by the Dutch ICES-HPCN programme. 

Computational steering is a form of scientific 
visualization that is quite different from post-pro­
cessing. It enables the researcher to change par­
ameters of the simulation while the simulation is in 
progress. As an example, Marshall of the Ohio 
Supercomputer Center has applied computational 
steering to the study of a 30 turbulence model of 
Lake Erie [2]. Their conclusions were: "Interaction 
with the computational model and the resulting 
graphics display is fundamental in scientific visual­
ization. Steering enhances productivity by greatly 
reducing the time between changes to model par­
ameters and the viewing of the results". 

Steering has a strong relation with high perform­
ance computing and networking. First, to gain in­
sight into the ever increasing complexity of high 
performance simulations, post-processing falls 
short. More advanced interactive visualization 
methods are needed. Second, high performance 
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computing is needed to execute simulations :and 
rendering at interactive speeds. High ba.nd~idth 
and low latency networks are needed to interactive­
ly handle the vast amount of data produced by HPC 
simulations. If interactive speeds cannot be ob­
tained, then most of the merits of computational 
steering will be lost. 

Computational steering is an attractive concept, 
but its implementation is cumbersome and time 
consuming. A researcher must cooperate with 
a specialist in user-interfaces and visualization to 
develop a tool for the analysis of the output of the 
simulation. When the tool is ready, after some weeks 
or months, chances are high that the interests of the 
researcher have shifted. Also, further analysis of the 
data will introduce new research questions, which 
induce modifications of the tool. The close cooper­
ation between researcher and the visualization 
specialist for an extended period is required. More 
appropriate would be to provide an environment in 
which researchers themselves can build interfaces 
and visualizations to the simulation. This would 
result in a more effective and efficient model- simu­
late-analysis cycle. 

The CSE is a software environment for computa­
tional steering [3]. The CSE provides a collection of 
methods, techinques, and tools that enable re­
searchers to apply computational steering. The for­
mat of this paper is as follows: First, a number of 
requirements, which we believe are fundamental for 
a steering environment, are given. We then present 
some key concepts of the CSE's architecture and the 
tools provided for the visualization of and interac­
tion with the data. Finally, two applications are 
discussed as an illustration of the use of the CSE. 

2. Requirements 

Consider Fig. 1, which depicts the data flow be­
tween a researcher and simulation via a CSE. 
A number of requirements for a steering environ­
ment can be given. First, the researcher enters new 
values for parameters, and views visualizations of 
the resulting data. Heooe, input widgets such as 
text-fields., sliders, buttons. as well as a variety ol 
visualization methods, such as graphs, text, graphics 
objects, etc. must be provided. Graphical objects 
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must be provided that allow for two-way communi­
cation: both input and output. It must be possible to 
select and drag visualization objects, thereby direc­
tly controlling parameters and state variables of the 
simulation. 

The simulation receives from the CSE new par­
ameter values, and returns newly calculated results 
to the CSE. We assume that the simulation can 
handle changes of parameters on the fly, and that it 
can provide meaningful intermediate results within 
a time-interval that is acceptable to the researcher. 

The process of achieving insight via simulation is 
an incremental one. The researcher must be able to 
create and refine the interlace to the simulation 
easily and incrementally. For all stages of the visual­
ization pipeline (from simulation to rendering) the 
cycle s[>eci.fication, implementation, application is 
continuously reiterated. 

The architecture of the CSE must be modular. 
There are two reasons for this: First. it must be 
possible to integrate existing tools, e.g. a special 
purpose package for grid-editing, in the CSE. Se­
cond, simulations usually execute on remote com­
pute servers. Modular architectures simplify embed­
ding simulations in the CSE. 

The final requirement concerns the underlying 
data model and the amount of data movement 
within the CSE. The type of data to be handled 
depends very much on the type of simulation, and 
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therefore can vary from simple scalar data to large, 
3D, time-dependent vector and tensor field data 
sets. The underlying data model must be flexible 
enough to support a wide range of data types. Also, 
due to the quantity of data output from the simula­
tion, the CSE must be able to handle large data sets 
efficiently. 

3. Computational steering environment 

3.1 Architecture 

An overview of the architecture of the CSE is 
shown in Fig. 2. The architecture is centered around 
a data manager that acts as a blackboard for com­
municating values. Separate processes (satellites) 
can connect to the data manager and exchange data 
with it. The simulation is packaged as a satellite. The 
purpose of the data manager is twofold. First, it 
manages a database of variables. Satellites can cre­
ate, open, close, read, and write variables. For each 
variable the data manager stores a name, type, and 
value. Second, the data manager acts as an event 
notification manager. Satellites can subscribe to 
state changes in the data manager. When such 
a state change occurs the satellite will receive a noti­
fication from the data manager. For example, when 
a satellite subscribes to mutation events on a par-
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ticular variable, the data manager will send a notifi­
cation to that satellite whenever the value of the 
variable is mutated. 

The kernel of the CSE architecture consists of the 
data manager and low level libraries that can access 
this functionality. The kernel is designed to be very 
simple, flexible and minimalistic. Unique in the CSE 
architecture is that higher level system functionality 
is pushed into satellites and not implemented in the 
kernel [ 4]. For example, a synchronization manage­
ment satellite has been developed which allows 
visual specifi.ca~ion of triggering and synchroniz­
ation criteria between satellites. Another example of 
a system satellite is the transfer tuple satellite, which 
allows for efficient data transfer between two data 
managers. A larger collection of general purpose 
visualization and data manipulation satellites have 
been built. Examples are satellites that implement 
data slicing, logging, calculation, transformation, 
and annotation. 

3.2. Integration of simulations 

Communication of a satellite with the data man­
ager is done via a small application programmers 
interface (API). The abstractions used are similar to 
standard UNIX I/O file handling, with variables 
instead of files. The functionality provided by this 
API is compact, terse and complete, but not simple 
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Fig. 2. The CSE architecture. 
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to use. Therefore, on top of this interface a Data I/O 
library was defined. which is tuned to the needs of 
researchers who want to integrate their simulations 
within the CSE. The Data I/O library is simple to 
use and bides the complexities of the low level 
interface. 

What are the design requirements for the Data 
I/O library? By far the most important is that the 
required changes to the simulation code are abso­
lutely minimal. The researcher will not accept to 
rewrite the (FORTRAN) application; e.g. by chang­
ing the control structure from straightforward iter­
ation into an event-driven structure. Additional 
bookkeeping should not be necessary. In other 
words, the researcher must be provided with only 
a few simple routines, just to declare and communi­
cate variables. We present the Data 1/0 library, with 
a simple but generic example. Though this particu­
lar example uses C-language bindings, Fortran­
language bindings are supported as well. 

simulation(fioat*s, fioat*t, int*size, tloat*x) 
{ 

} 

int continue= TRUE; 
/* Open connection, connect and subscribe 
variables*/ 
dioOpen("bomeo.cwi.nl"); 
dioConnectFloatf's", s, READ); 
dioConnectint' \continue", &continue, 
READ); 
dioConnectFloatArray("x'', x, 1, size, UP­
DATE); 
dioConnectFloat(''t", t, WRITE); 
/*simulation loop and update data*/ 
while {continue) 
{ 

t = t + 1.0; 
calculate-values(t,s, size,x); 
dioUpd.ate(); 
} 
dioClose(); 

The structure of this example, which is typical for 
continuous simulations, consists of two parts. First, 
variables are initiaJized. The required changes to an 
existing source code would be limited to opening 
and closing a connection with the data manager and 
connection of the variables via the dioConnect 

routines. Second, a main loop is entered where time 
is incremented and new values are calculated. The 
required changes to the source code is a single call to 
exchange data. The locations to insert these calls are 
easy to find: typically at the outer level of the 
simulation program. 

The first parameters of the dioConnect rou­
tines are the name of the variable and its address. 
For the connection of arrays the number of dimen­
sions and their sizes must also be specified. The last 
parameter describes the direction of the data flow. 
This information is used by the dioUpdate () 
routine to decide what must be done. In 
dioUpdate () first the event stream.from the data 
manager is checked if variables to be read or up­
dated have changed. If so, these variables are read 
from the data manager. Next the values of all un­
changed variables are written to the data manager. 
The net result of dioUpdate ( ) is that all connec­
ted variables have the same value in the simulation 
and data manager. With these few calls the user can 
steer parameters (s) of the simulation, to stop the 
simulation (continue), monitor its progress (t, x) 
or even to change state variables (x). 

The simulation in the example executes asyn­
chronously, without waiting for external events. 
After each iteration all data are read or written. 
Alternatively, the routine dioSetSyncVar () can 
be used if the simulation must execute synchronous­
ly with other satellites. 

To deal with more subtle situations variables can 
be grouped into sets. In the main loop the applica­
tion can read and write specific sets, and wait until 
a particular set changes. Hence, a more efficient use 
of resources can be realized with a small additional 
effort. 

3.3 Parameterized graphics objects 

The most predominant satellite is thePGO editor, 
an interactive, MacDraw-like, graphics editing tool 
There are two versions of the graphics editing tool, 
a 2D and a 30 version [5]. The central concept of 
the graphics editor is the parametrized graphics 
object (PGO): an interface is built up from graphics 
objects whose properties are functions of data in the 
data manager. The PGO editor has two modes: 
specification and application, or edit and run. In edit 
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Fig. 3. Arrow in edit mode (left) and run mode (right). 

mode, the researcher can edit graphics objects and 
parametrize their geometry and attributes with vari­
able names in the data manager. Hence, in edit 
mode, the researcher sketches a specification of the 
interface. In run mode, a two-way binding is estab­
lished between the graphics objects and variable 
names in the data manager. Simulations may steer 
the interface by mutating the data bound to the 
graphics objects. Similarly, researchers drive the 
simulation by manipulating graphics objects. Hence, 
in run mode, a two-way communication between 
graphics and data in the simulation is realized. 

As a simple example of how one would use the 
PGO editor, consider the left side of Fig. 3, which 
depicts the specification of an arrow. The right side 
shows that application of the arrow, after being 
bound to an array of values in the data manager. 
The arrow could, for instance, be used to steer a field 
force in the simulation. Its length would then be 
parametrized to the magnitude of the force while its 
orientation would depict the direction of the force. 
In addition to facilities for graphical object specifi­
cation, the 3D PGO editor provides techniques that 
simplify interaction with objects. Every graphical 
object that is bound to data may be directly manipu­
lated. Two other examples are the 30 crosshair 
cursor and shadow editing. The crosshair cursor 
provides the user with fine control over the position­
ing and translating of points and objects in 30 
space. Shadow editing allows the user to interact 

with the orthogonal projections (shadows) of the 
objects on a bounding box. An example of shadow 
editing is shown in Fig. 3. 
The combination of the Data I/O library and the 
PGO editor has led to a very interactive and iter­
ative way of gaining insight into a simulation. We 
call this type of working method "what you draw is 
what you contror', and is characterized by the 
following loop: 

(i) Decide which parameters are important for 
control and visualization, 

(ii) Use the Input /Output library to connect par­
ameters, 

(iii) Use the PGO editor to edit an interface, 
(iv) Run the interface: view and control the simula­

tion 
(v) Analyze the results and go back to one of the 

previous steps. 

4. Applications 

4.1 Atmospheric simulation 

The CSE has been applied to the simulation of 
a model for smog prediction over Europe. 2 The full 
blown model forecasts the levels of air pollution, 

2 PEMPI stands for "Programming Environment for the 
Message-Passing Interface", pronounced as [peritpai]. 
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which is characterized by approximatley 25 reac­
tions between ea. 20 species. For example, the con­
centrations of ozone (03), sulphur dioxide (S02) 

and sulphate aerosol (SO J are calculated. The verti­
cal stratification is modeled by four layers; the sur­
face layer, the mixing layer, the reservoir layer, and 
the upper layer. The computational model is de­
scribed by a set of partial differential equations that 
model advection, diffusion, emission, wet and dry 
deposition, fumigation, and chemical reactions. 

An important numerical utility to solve these 
equations is the local grid refinement [6]. This 
technique is used to improve he quality of the model 
calculations in areas with large spatial gradients (for 
example in regions with strong emisions). The trade 
off to be made in local grid refinement is calculation 
accuracy versus computation speed. The CSE has 
been used to steer various aspects o the smog predic­
tion simulation: 
- Control of the tolerance value that determines 

where grid refinement is necessary, 
- Editing of emission data, 
- Use of a bounding box as a concentration probe. 

The coordinates of the bounding box steer the 
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slicing satellite, which in tum triggers the calcula­
tor and logging satellites. The result of the logging 
satellite triggers the PGO editor, 

- Interactive control over simulation time. 

The left side of Fig. 4 shows a snapshot of the 
PGO editor in edit mode, the right side shows 
a snapshot in run mode. The concentration of ozone 
in the upper layers is shown in color along with 
areas of local grid refinement (shown as smaller 
rectangles). The wind field is shown as small black 
vectors. This setup enables a numerical mathema­
tician to gain insight into the relationship between 
grid refinement tolerance, the maximal Courant 
number, and the simulation time. Sliders control the 
grid refinement tolerance and simulation time. The 
graph on the lower left side shows a log of the 
number of grid cells that are refined and the maxi­
mum Courant number. The dmlog satellite records 
the data for display. The graph immediately dis­
plays the effects of changes on the tolerance or the 
simulation time. 

Fig. 5 is a snapshot of the satellite configuration 
of the smog prediction model. The configuration 

Fig. 4. Smog prediction simulation: edit mode (left) and run mode (right~ 
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Fig. 5. Satellite configuration of the smog prediction model. 

consists of eight uniquely labeled satellites. The 
nodes of the graph represent the satellites connected 
to the data manager. The blue edges indicate data 
flow dependency. A blue arrow indicates a directed 
data dependency. Green edges indicate a trigger 
graph; a graph that defines the synchronous execu­
tion order of satellites. The panel on the top right 
provides additional variable information of a se­
lected satellite. The panel on the bottom is the 
interface to the trigger graph editor. This particular 
configuration runs at approximately five frames 
a second on a modem workstation. The amount of 
data involved is substantial: depending on the toler­
ance level, the amount of data may vary between 
one and four megabytes per time step. The simula­
tion has 447 time steps. Approximately 90% of the 
CPU time was taken by the simulation. The remain­
ing 10% was used by other satellites and data 
transport in the CSE. 

4.2 Computational fluid dynamics 

A classical computational fluid dynamics prob­
lem is the analysis of the flow field around an airfoil 
under various far-field conditions. 3 Given a number 
of assumptions, this problem can be mathematically 
modeled by the so-called Euler equations of gas 
dynamics. There exist a number of numerical 

3 As dynamic process creation is specified in MPI-2 [S], the 
current MPI-DDL specification only partially supports the tree 
functionality. 

methods to solve discretized forms of the Euler 
equations. One class of such methods uses adaptive 
multi-grid techniques. At CWI multi-grid methods 
are studied intensively, especially for the solution of 
the compressible Euler equations [7]. The efficiency 
of adaptive multi-grid methods for the solution of 
systems of partial differential equations is superior 
to that of other solution methods. 

The problem studied here is the flow around the 
well-known NACA0012-airfoil. The user can 
change the angle of attack and the Mach number, 
the solver calculates the corresponding pressure, 
density and velocity fields. Small perturbations of 
these parameters give insight into various aspects of 
the flow field. Since new parameter values define 
a completely new problem the solve is reinitialized 
each time a parameter is changed. Intermediate 
results of the solver are displayed to show the 
convergence of the process. 

Fig. 6 shows a PGO interface to the multi-grid 
flow solver. On the left side is the PGO interface in 
edit mode. To the right is the PGO interface in run 
mode. The upper left and upper right panels show 
the pressure and density fields. The adaptive grid 
refinement is shown in the lower right panel. Vari­
ous parameters that control the adaptive grid refine­
ment scheme, such as the refinement tolerance and 
the maximum depth of the refinement process, can 
be changed on the fly. Hence, the user can make 
a trade-off between fast, but possibly inaccurate 
results, and slow, precise results. The time needed to 
develop this interface was about three afternoons. 
Alternative visual interfaces to the simulation can 
now be defined interactively during analysis sessions. 

The total simulation time is about 2 s for a simu­
lation on a grid of size 32 x 128 for the lowest level 
and 128 x 512 for the highest level. Intermediate 
results are displayed instantaneously. The simula­
tion runs on a four CPU SGI Challenge and the 
visualization is performed on an SGI Indigo 2 High 
Impact workstation. The systems are connected 
through an A TM network. 

5. Related work 

Many research and development teams have de­
signed and implemented interactive visualization 
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Fig. 6. Multi-grid solution of Euler equations: edit and run mode. 

environments, Williams et al. [8] provides a frame­
work to understand design trade offs when develop­
ing data flow-based visualization systems. Gu et al. 
[9] give a comprehensive annotated bibliography of 
many aspects of interactive program steering. 

Giving an in-depth analysis of other visualization 
environments is beyond the scope of this paper. 
Instead, we focus only on some issues that are found 
in the CSE: 
- In data ft.ow environments, visulization operators 

are combined by linking output and input ports. 
Operators are executed upon availability of data 
on the input port Operators are packaged as 
modules, and most data ftow environments pro­
vide high level tools for building modules. 
IRIS Explorer [10] is an example of a data flow 

visualization environment. There are many funda­
mental difference between IRIS Explorer and CSE. 
First, direct manipulation is very difficult to achieve 
in data flow environments. In IRIS Explorer there is 
no one-to-one relation between geometry and a cor­
responding object in an upstream module. This 
makes direct manipulation of objects in the simula­
tion very tedious. In contrast, with CSE's binding 
mechanism direct manipulation is ensured. Second, 
IRIS Explorer's mechanism to manage data trans­
port differs from CSE's. Data producing operators 

push data to downstream consuming operators. 
This may result in redundant data movement, if the 
downstream operator does not need the data. In 
contrast, a satellite in the CSE will only read data 
when it is ready to consume it. 
- Glyphmaker [11] is a system that allows users to 

customize graphical representations using 
a glyph editor and a simple point-to-click binding 
mechanism. Glyphmaker is implemented as a 
collection of modules in IRIS Explorer. 

Allowing users to specify customized graphical 
representations resembles the main idea of the 
PGO editor although the implementations are 
very different. Glyphmaker's graphics primitives 
are targeted to glyph specifications for the visual­
ization of data, whereas the PGO•s graphics 
primitive set is larger, and aims at both visualiz­
ation and user input. 

- VIEW [12] is a system that is based on a tight 
coupling of on-screen geometry with a database. 
A data drawing tool allows users to define com­
posite geometric objects by selecting primitive 
graphical components from the database. In ad­
dition, an event-definition mechanism allows the 
user to customize interaction sequences. A tool 
scripting language is used to specify these interac­
tion sequences, and simple selection functions are 
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offered to bind names in the scripts to geometry in 
the database. Event monitors are used to execute 
scripts. 
A principle differenc.e between VIEW and CSE is 

event handling. VIEW provides event monitors to 
customize interaction sequences. Events in VIEW 
include changes in input device state and picking of 
geometry. CSE notion of events is based exclusively 
on state changes within the data manager. Satellites 
may receive events by subscribing to the state change. 

6. Discussion 

As computational models become more complex, 
end users have an increasing need for interactive 
tools in which their computational models can be 
explored. Computational steering is useful in several 
areas. The standard application of computational 
steering is parameter variation such that the end 
user gains insight. Technical discussions progress 
much faster if "What if?" questions can be answered 
immediately. In Section 4 we have shown examples 
of parameter variation. However, steering can also 
be applied to other areas. For example, steering can 
be used in model development, when initial model 
settings are sought. Also, in code development, 
steering can be used to debug numerical code. 

In this paper we discussed the requirements and 
design of the CSE. An architecture with a central 
data manager gives flexibility and modularity. The 
data I/O library was presented as an easy to use 
layer for data communication between data man­
ager and simulation. With parametrized graphics 
objects end users themselves can define customized 
visualizations for their data. The CSE thus enables 
end users to develop visualizations interactively, 
together with the development of their model and 
simulation. It is easy to connect new parameters and 
to define their visualization if new parameters have 
to be controlled or other results must be visualized. 
The design of the CSE's architecture was driven by 
the following basic concepts: 

- The use of low level primitives: a simple data 
model and graphics objects. The interfaces to 
these primitives are familiar to the end user: 
a simple I/O library for data manipulation and 
the PGO editor for graphics. 

- No higher level semantics are defined in the kernel. 
As a result, the environment is general and flex­
ible. High level features are built on top of the 
kernel by putting this functionality into satellites. 
By pushing high level functionality into satellites, 
the CSE provides an environment that is exten­
sible and reuseable. 

- The data manager, the PGO editor and all other 
satellites rely on late binding of named variables. 
As a result, it is possible to iteratively define new 
visualizations or define different bindings to out­
put data. 

- All operations in the data manager and satellites 
are based entirely on data. For example, in the 
PGO editor, dragging, picking and text input are 
translated into changes of data. The predominant 
type of event within the CSE is the data mutation. 

The CSE currently runs on SGI, Sun, DEC Alpha, 
HP, Cray C90 and IBM SP1 platforms. The CSE 
uses the device independent graphics package Open 
GL for the implementation of the PGO and TCP/ IP 
for data transport over Ethernet or ATM networks. 
In our future work we aim at further improvement 
and expansion of the CSE. The conceptual model 
has proven to be simple and effective for users, hence 
these enhancements must be hidden from the end 
users. Firstly, the resource management can be im­
proved. All data sets are now routed via TCP /IP 
connections to the data manager. For small data 
sets this works well, for very large data sets more 
efficient techniques are required. In particular, 
a centralized data manager is not efficient for the 
data movement of large data sets. Secondly, the 
current CSE provides only support for direct steer­
ing. Additional tools that support the user with 
automatic navigation in parameter spaces will be 
developed. Thirdly, we will further explore novel 
presentation techniques, especially for 30 simula­
tions. PGOs provide an excellent means for fast 
implementation of icons, composite 30 interactors 
and multiple scalar fields. 
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