
I FGCS
euTURE

9ENERATION
•oMPUTER

EL<iEVTER Future Generation Computer Systems 12 (1997) 441-450
9YSTEMS

Computational steering

Robert van Liere8 ·*·1 , Jurriaan D. Mulder\ Jarke J. van Wijka,b

*Center for Mathematics and Computer Science CWJ, PO Box 4097, 1090 GB Amsterdam, The Netherlands

b Netherlands Energy Research Foundation ECN, PO Box 1, 1755 ZG Petten, The Netherlands

Abstract

The traditional cycle in simulation is to prepare input, execute a simulation, and to visualize the results as
a post-processing step. However, more insight and a higher productivity can be achieved if these activities are done
simultaneously. This is the underlying idea of computational steering: researchers change parameters of their simulation on
the fly and immediately receive feedback on the effect.

In this paper the computational steering environment, CSE, is described. We discuss the requirements of computational
steering environment, its relation with high performance computing and networking, and show an application of its use.

Keywords: Scientific visualization; Computational steering; 3D graphics and interaction

1. Introduction

Scientific visualization has been a research area
since 1987, when the influential report of the US
National Science Foundation was published [1].
Since then many new methods, techniques, and
packages have been developed. Most of these devel­
opments are focussed on post-processing of data
sets. Usually the assumption is made that all data
are generated first, after which the researcher iter­
ates through the steps of the visualization pipeline
(selection, filtering, mapping, and rendering) to
achieve insight into the generated data. Hence, with
post-processing the interaction with the simulation
is limited.

• Corresponding author.
1 Partially supported by the Dutch ICES-HPCN programme.

Computational steering is a form of scientific
visualization that is quite different from post-pro­
cessing. It enables the researcher to change par­
ameters of the simulation while the simulation is in
progress. As an example, Marshall of the Ohio
Supercomputer Center has applied computational
steering to the study of a 30 turbulence model of
Lake Erie [2]. Their conclusions were: "Interaction
with the computational model and the resulting
graphics display is fundamental in scientific visual­
ization. Steering enhances productivity by greatly
reducing the time between changes to model par­
ameters and the viewing of the results".

Steering has a strong relation with high perform­
ance computing and networking. First, to gain in­
sight into the ever increasing complexity of high
performance simulations, post-processing falls
short. More advanced interactive visualization
methods are needed. Second, high performance

0167-739X/97/$17.00Copyright © 1997 Elsevier Science B.V. All rights reserved
PIISO 167-739X(96)00029-5

computing is needed to execute simulations :and
rendering at interactive speeds. High ba.nd~idth
and low latency networks are needed to interactive­
ly handle the vast amount of data produced by HPC
simulations. If interactive speeds cannot be ob­
tained, then most of the merits of computational
steering will be lost.

Computational steering is an attractive concept,
but its implementation is cumbersome and time
consuming. A researcher must cooperate with
a specialist in user-interfaces and visualization to
develop a tool for the analysis of the output of the
simulation. When the tool is ready, after some weeks
or months, chances are high that the interests of the
researcher have shifted. Also, further analysis of the
data will introduce new research questions, which
induce modifications of the tool. The close cooper­
ation between researcher and the visualization
specialist for an extended period is required. More
appropriate would be to provide an environment in
which researchers themselves can build interfaces
and visualizations to the simulation. This would
result in a more effective and efficient model- simu­
late-analysis cycle.

The CSE is a software environment for computa­
tional steering [3]. The CSE provides a collection of
methods, techinques, and tools that enable re­
searchers to apply computational steering. The for­
mat of this paper is as follows: First, a number of
requirements, which we believe are fundamental for
a steering environment, are given. We then present
some key concepts of the CSE's architecture and the
tools provided for the visualization of and interac­
tion with the data. Finally, two applications are
discussed as an illustration of the use of the CSE.

2. Requirements

Consider Fig. 1, which depicts the data flow be­
tween a researcher and simulation via a CSE.
A number of requirements for a steering environ­
ment can be given. First, the researcher enters new
values for parameters, and views visualizations of
the resulting data. Heooe, input widgets such as
text-fields., sliders, buttons. as well as a variety ol
visualization methods, such as graphs, text, graphics
objects, etc. must be provided. Graphical objects

Researoher

l

graphicel cHrect visuaJlza.
input manipulation

Computatiooal Steering Environment

state
perameters

, variables
results

Simulation

must be provided that allow for two-way communi­
cation: both input and output. It must be possible to
select and drag visualization objects, thereby direc­
tly controlling parameters and state variables of the
simulation.

The simulation receives from the CSE new par­
ameter values, and returns newly calculated results
to the CSE. We assume that the simulation can
handle changes of parameters on the fly, and that it
can provide meaningful intermediate results within
a time-interval that is acceptable to the researcher.

The process of achieving insight via simulation is
an incremental one. The researcher must be able to
create and refine the interlace to the simulation
easily and incrementally. For all stages of the visual­
ization pipeline (from simulation to rendering) the
cycle s[>eci.fication, implementation, application is
continuously reiterated.

The architecture of the CSE must be modular.
There are two reasons for this: First. it must be
possible to integrate existing tools, e.g. a special
purpose package for grid-editing, in the CSE. Se­
cond, simulations usually execute on remote com­
pute servers. Modular architectures simplify embed­
ding simulations in the CSE.

The final requirement concerns the underlying
data model and the amount of data movement
within the CSE. The type of data to be handled
depends very much on the type of simulation, and

R. Van Liere et al./Futwe Generation C()111puter Systems 12 (1997) 441-450 443

therefore can vary from simple scalar data to large,
3D, time-dependent vector and tensor field data
sets. The underlying data model must be flexible
enough to support a wide range of data types. Also,
due to the quantity of data output from the simula­
tion, the CSE must be able to handle large data sets
efficiently.

3. Computational steering environment

3.1 Architecture

An overview of the architecture of the CSE is
shown in Fig. 2. The architecture is centered around
a data manager that acts as a blackboard for com­
municating values. Separate processes (satellites)
can connect to the data manager and exchange data
with it. The simulation is packaged as a satellite. The
purpose of the data manager is twofold. First, it
manages a database of variables. Satellites can cre­
ate, open, close, read, and write variables. For each
variable the data manager stores a name, type, and
value. Second, the data manager acts as an event
notification manager. Satellites can subscribe to
state changes in the data manager. When such
a state change occurs the satellite will receive a noti­
fication from the data manager. For example, when
a satellite subscribes to mutation events on a par-

text drag pJclc visualization

PGOedltor

data

Data Manager

SlmulatlOn

ticular variable, the data manager will send a notifi­
cation to that satellite whenever the value of the
variable is mutated.

The kernel of the CSE architecture consists of the
data manager and low level libraries that can access
this functionality. The kernel is designed to be very
simple, flexible and minimalistic. Unique in the CSE
architecture is that higher level system functionality
is pushed into satellites and not implemented in the
kernel [4]. For example, a synchronization manage­
ment satellite has been developed which allows
visual specifi.ca~ion of triggering and synchroniz­
ation criteria between satellites. Another example of
a system satellite is the transfer tuple satellite, which
allows for efficient data transfer between two data
managers. A larger collection of general purpose
visualization and data manipulation satellites have
been built. Examples are satellites that implement
data slicing, logging, calculation, transformation,
and annotation.

3.2. Integration of simulations

Communication of a satellite with the data man­
ager is done via a small application programmers
interface (API). The abstractions used are similar to
standard UNIX I/O file handling, with variables
instead of files. The functionality provided by this
API is compact, terse and complete, but not simple

exprrusion

Calculator
sai.111te

dala data

Fig. 2. The CSE architecture.

R. Van Liereet al./ Future Generation Computer Systems 12 (1997) 441-4.SO

to use. Therefore, on top of this interface a Data I/O
library was defined. which is tuned to the needs of
researchers who want to integrate their simulations
within the CSE. The Data I/O library is simple to
use and bides the complexities of the low level
interface.

What are the design requirements for the Data
I/O library? By far the most important is that the
required changes to the simulation code are abso­
lutely minimal. The researcher will not accept to
rewrite the (FORTRAN) application; e.g. by chang­
ing the control structure from straightforward iter­
ation into an event-driven structure. Additional
bookkeeping should not be necessary. In other
words, the researcher must be provided with only
a few simple routines, just to declare and communi­
cate variables. We present the Data 1/0 library, with
a simple but generic example. Though this particu­
lar example uses C-language bindings, Fortran­
language bindings are supported as well.

simulation(fioat*s, fioat*t, int*size, tloat*x)
{

}

int continue= TRUE;
/* Open connection, connect and subscribe
variables*/
dioOpen("bomeo.cwi.nl");
dioConnectFloatf's", s, READ);
dioConnectint' \continue", &continue,
READ);
dioConnectFloatArray("x'', x, 1, size, UP­
DATE);
dioConnectFloat(''t", t, WRITE);
/*simulation loop and update data*/
while {continue)
{

t = t + 1.0;
calculate-values(t,s, size,x);
dioUpd.ate();
}
dioClose();

The structure of this example, which is typical for
continuous simulations, consists of two parts. First,
variables are initiaJized. The required changes to an
existing source code would be limited to opening
and closing a connection with the data manager and
connection of the variables via the dioConnect

routines. Second, a main loop is entered where time
is incremented and new values are calculated. The
required changes to the source code is a single call to
exchange data. The locations to insert these calls are
easy to find: typically at the outer level of the
simulation program.

The first parameters of the dioConnect rou­
tines are the name of the variable and its address.
For the connection of arrays the number of dimen­
sions and their sizes must also be specified. The last
parameter describes the direction of the data flow.
This information is used by the dioUpdate ()
routine to decide what must be done. In
dioUpdate () first the event stream.from the data
manager is checked if variables to be read or up­
dated have changed. If so, these variables are read
from the data manager. Next the values of all un­
changed variables are written to the data manager.
The net result of dioUpdate () is that all connec­
ted variables have the same value in the simulation
and data manager. With these few calls the user can
steer parameters (s) of the simulation, to stop the
simulation (continue), monitor its progress (t, x)
or even to change state variables (x).

The simulation in the example executes asyn­
chronously, without waiting for external events.
After each iteration all data are read or written.
Alternatively, the routine dioSetSyncVar () can
be used if the simulation must execute synchronous­
ly with other satellites.

To deal with more subtle situations variables can
be grouped into sets. In the main loop the applica­
tion can read and write specific sets, and wait until
a particular set changes. Hence, a more efficient use
of resources can be realized with a small additional
effort.

3.3 Parameterized graphics objects

The most predominant satellite is thePGO editor,
an interactive, MacDraw-like, graphics editing tool
There are two versions of the graphics editing tool,
a 2D and a 30 version [5]. The central concept of
the graphics editor is the parametrized graphics
object (PGO): an interface is built up from graphics
objects whose properties are functions of data in the
data manager. The PGO editor has two modes:
specification and application, or edit and run. In edit

R. Vanliere et al./Futurll Generation Computer System:i 12 (1997) 441-450 445

Fig. 3. Arrow in edit mode (left) and run mode (right).

mode, the researcher can edit graphics objects and
parametrize their geometry and attributes with vari­
able names in the data manager. Hence, in edit
mode, the researcher sketches a specification of the
interface. In run mode, a two-way binding is estab­
lished between the graphics objects and variable
names in the data manager. Simulations may steer
the interface by mutating the data bound to the
graphics objects. Similarly, researchers drive the
simulation by manipulating graphics objects. Hence,
in run mode, a two-way communication between
graphics and data in the simulation is realized.

As a simple example of how one would use the
PGO editor, consider the left side of Fig. 3, which
depicts the specification of an arrow. The right side
shows that application of the arrow, after being
bound to an array of values in the data manager.
The arrow could, for instance, be used to steer a field
force in the simulation. Its length would then be
parametrized to the magnitude of the force while its
orientation would depict the direction of the force.
In addition to facilities for graphical object specifi­
cation, the 3D PGO editor provides techniques that
simplify interaction with objects. Every graphical
object that is bound to data may be directly manipu­
lated. Two other examples are the 30 crosshair
cursor and shadow editing. The crosshair cursor
provides the user with fine control over the position­
ing and translating of points and objects in 30
space. Shadow editing allows the user to interact

with the orthogonal projections (shadows) of the
objects on a bounding box. An example of shadow
editing is shown in Fig. 3.
The combination of the Data I/O library and the
PGO editor has led to a very interactive and iter­
ative way of gaining insight into a simulation. We
call this type of working method "what you draw is
what you contror', and is characterized by the
following loop:

(i) Decide which parameters are important for
control and visualization,

(ii) Use the Input /Output library to connect par­
ameters,

(iii) Use the PGO editor to edit an interface,
(iv) Run the interface: view and control the simula­

tion
(v) Analyze the results and go back to one of the

previous steps.

4. Applications

4.1 Atmospheric simulation

The CSE has been applied to the simulation of
a model for smog prediction over Europe. 2 The full
blown model forecasts the levels of air pollution,

2 PEMPI stands for "Programming Environment for the
Message-Passing Interface", pronounced as [peritpai].

446 R. Yan Liere et a1./Futll1'e Generation Consputer Systems 12 (1997) 441-450

which is characterized by approximatley 25 reac­
tions between ea. 20 species. For example, the con­
centrations of ozone (03), sulphur dioxide (S02)

and sulphate aerosol (SO J are calculated. The verti­
cal stratification is modeled by four layers; the sur­
face layer, the mixing layer, the reservoir layer, and
the upper layer. The computational model is de­
scribed by a set of partial differential equations that
model advection, diffusion, emission, wet and dry
deposition, fumigation, and chemical reactions.

An important numerical utility to solve these
equations is the local grid refinement [6]. This
technique is used to improve he quality of the model
calculations in areas with large spatial gradients (for
example in regions with strong emisions). The trade
off to be made in local grid refinement is calculation
accuracy versus computation speed. The CSE has
been used to steer various aspects o the smog predic­
tion simulation:
- Control of the tolerance value that determines

where grid refinement is necessary,
- Editing of emission data,
- Use of a bounding box as a concentration probe.

The coordinates of the bounding box steer the

_ __
-l":'-

•
r ... r. ~ - ~

r.· ••
l

.... ---
""
•' .. •'

•"" ·-- ·-...
lit- I IT r~; -.................. _.

:--..............
f I

.. ~
r--~ - - ~- ·l~ r

slicing satellite, which in tum triggers the calcula­
tor and logging satellites. The result of the logging
satellite triggers the PGO editor,

- Interactive control over simulation time.

The left side of Fig. 4 shows a snapshot of the
PGO editor in edit mode, the right side shows
a snapshot in run mode. The concentration of ozone
in the upper layers is shown in color along with
areas of local grid refinement (shown as smaller
rectangles). The wind field is shown as small black
vectors. This setup enables a numerical mathema­
tician to gain insight into the relationship between
grid refinement tolerance, the maximal Courant
number, and the simulation time. Sliders control the
grid refinement tolerance and simulation time. The
graph on the lower left side shows a log of the
number of grid cells that are refined and the maxi­
mum Courant number. The dmlog satellite records
the data for display. The graph immediately dis­
plays the effects of changes on the tolerance or the
simulation time.

Fig. 5 is a snapshot of the satellite configuration
of the smog prediction model. The configuration

Fig. 4. Smog prediction simulation: edit mode (left) and run mode (right~

R. Yan Liere et al./ Future Generation Computer Systems 12 (1997) 441-450 447

U~KEOO"OR
CNATE-· ..-•r• ,

Ulll •••

Fig. 5. Satellite configuration of the smog prediction model.

consists of eight uniquely labeled satellites. The
nodes of the graph represent the satellites connected
to the data manager. The blue edges indicate data
flow dependency. A blue arrow indicates a directed
data dependency. Green edges indicate a trigger
graph; a graph that defines the synchronous execu­
tion order of satellites. The panel on the top right
provides additional variable information of a se­
lected satellite. The panel on the bottom is the
interface to the trigger graph editor. This particular
configuration runs at approximately five frames
a second on a modem workstation. The amount of
data involved is substantial: depending on the toler­
ance level, the amount of data may vary between
one and four megabytes per time step. The simula­
tion has 447 time steps. Approximately 90% of the
CPU time was taken by the simulation. The remain­
ing 10% was used by other satellites and data
transport in the CSE.

4.2 Computational fluid dynamics

A classical computational fluid dynamics prob­
lem is the analysis of the flow field around an airfoil
under various far-field conditions. 3 Given a number
of assumptions, this problem can be mathematically
modeled by the so-called Euler equations of gas
dynamics. There exist a number of numerical

3 As dynamic process creation is specified in MPI-2 [S], the
current MPI-DDL specification only partially supports the tree
functionality.

methods to solve discretized forms of the Euler
equations. One class of such methods uses adaptive
multi-grid techniques. At CWI multi-grid methods
are studied intensively, especially for the solution of
the compressible Euler equations [7]. The efficiency
of adaptive multi-grid methods for the solution of
systems of partial differential equations is superior
to that of other solution methods.

The problem studied here is the flow around the
well-known NACA0012-airfoil. The user can
change the angle of attack and the Mach number,
the solver calculates the corresponding pressure,
density and velocity fields. Small perturbations of
these parameters give insight into various aspects of
the flow field. Since new parameter values define
a completely new problem the solve is reinitialized
each time a parameter is changed. Intermediate
results of the solver are displayed to show the
convergence of the process.

Fig. 6 shows a PGO interface to the multi-grid
flow solver. On the left side is the PGO interface in
edit mode. To the right is the PGO interface in run
mode. The upper left and upper right panels show
the pressure and density fields. The adaptive grid
refinement is shown in the lower right panel. Vari­
ous parameters that control the adaptive grid refine­
ment scheme, such as the refinement tolerance and
the maximum depth of the refinement process, can
be changed on the fly. Hence, the user can make
a trade-off between fast, but possibly inaccurate
results, and slow, precise results. The time needed to
develop this interface was about three afternoons.
Alternative visual interfaces to the simulation can
now be defined interactively during analysis sessions.

The total simulation time is about 2 s for a simu­
lation on a grid of size 32 x 128 for the lowest level
and 128 x 512 for the highest level. Intermediate
results are displayed instantaneously. The simula­
tion runs on a four CPU SGI Challenge and the
visualization is performed on an SGI Indigo 2 High
Impact workstation. The systems are connected
through an A TM network.

5. Related work

Many research and development teams have de­
signed and implemented interactive visualization

448 R. Yan Liere et al./ Future Generation Computer Systems 12 (1997) 441-450

......... vc·-........

•

. -.--­··=

----........

•

Fig. 6. Multi-grid solution of Euler equations: edit and run mode.

environments, Williams et al. [8] provides a frame­
work to understand design trade offs when develop­
ing data flow-based visualization systems. Gu et al.
[9] give a comprehensive annotated bibliography of
many aspects of interactive program steering.

Giving an in-depth analysis of other visualization
environments is beyond the scope of this paper.
Instead, we focus only on some issues that are found
in the CSE:
- In data ft.ow environments, visulization operators

are combined by linking output and input ports.
Operators are executed upon availability of data
on the input port Operators are packaged as
modules, and most data ftow environments pro­
vide high level tools for building modules.
IRIS Explorer [10] is an example of a data flow

visualization environment. There are many funda­
mental difference between IRIS Explorer and CSE.
First, direct manipulation is very difficult to achieve
in data flow environments. In IRIS Explorer there is
no one-to-one relation between geometry and a cor­
responding object in an upstream module. This
makes direct manipulation of objects in the simula­
tion very tedious. In contrast, with CSE's binding
mechanism direct manipulation is ensured. Second,
IRIS Explorer's mechanism to manage data trans­
port differs from CSE's. Data producing operators

push data to downstream consuming operators.
This may result in redundant data movement, if the
downstream operator does not need the data. In
contrast, a satellite in the CSE will only read data
when it is ready to consume it.
- Glyphmaker [11] is a system that allows users to

customize graphical representations using
a glyph editor and a simple point-to-click binding
mechanism. Glyphmaker is implemented as a
collection of modules in IRIS Explorer.

Allowing users to specify customized graphical
representations resembles the main idea of the
PGO editor although the implementations are
very different. Glyphmaker's graphics primitives
are targeted to glyph specifications for the visual­
ization of data, whereas the PGO•s graphics
primitive set is larger, and aims at both visualiz­
ation and user input.

- VIEW [12] is a system that is based on a tight
coupling of on-screen geometry with a database.
A data drawing tool allows users to define com­
posite geometric objects by selecting primitive
graphical components from the database. In ad­
dition, an event-definition mechanism allows the
user to customize interaction sequences. A tool
scripting language is used to specify these interac­
tion sequences, and simple selection functions are

R. Van Liere et al./ Future Generation Computer Systems 12 (1997) 441-45Q 449

offered to bind names in the scripts to geometry in
the database. Event monitors are used to execute
scripts.
A principle differenc.e between VIEW and CSE is

event handling. VIEW provides event monitors to
customize interaction sequences. Events in VIEW
include changes in input device state and picking of
geometry. CSE notion of events is based exclusively
on state changes within the data manager. Satellites
may receive events by subscribing to the state change.

6. Discussion

As computational models become more complex,
end users have an increasing need for interactive
tools in which their computational models can be
explored. Computational steering is useful in several
areas. The standard application of computational
steering is parameter variation such that the end
user gains insight. Technical discussions progress
much faster if "What if?" questions can be answered
immediately. In Section 4 we have shown examples
of parameter variation. However, steering can also
be applied to other areas. For example, steering can
be used in model development, when initial model
settings are sought. Also, in code development,
steering can be used to debug numerical code.

In this paper we discussed the requirements and
design of the CSE. An architecture with a central
data manager gives flexibility and modularity. The
data I/O library was presented as an easy to use
layer for data communication between data man­
ager and simulation. With parametrized graphics
objects end users themselves can define customized
visualizations for their data. The CSE thus enables
end users to develop visualizations interactively,
together with the development of their model and
simulation. It is easy to connect new parameters and
to define their visualization if new parameters have
to be controlled or other results must be visualized.
The design of the CSE's architecture was driven by
the following basic concepts:

- The use of low level primitives: a simple data
model and graphics objects. The interfaces to
these primitives are familiar to the end user:
a simple I/O library for data manipulation and
the PGO editor for graphics.

- No higher level semantics are defined in the kernel.
As a result, the environment is general and flex­
ible. High level features are built on top of the
kernel by putting this functionality into satellites.
By pushing high level functionality into satellites,
the CSE provides an environment that is exten­
sible and reuseable.

- The data manager, the PGO editor and all other
satellites rely on late binding of named variables.
As a result, it is possible to iteratively define new
visualizations or define different bindings to out­
put data.

- All operations in the data manager and satellites
are based entirely on data. For example, in the
PGO editor, dragging, picking and text input are
translated into changes of data. The predominant
type of event within the CSE is the data mutation.

The CSE currently runs on SGI, Sun, DEC Alpha,
HP, Cray C90 and IBM SP1 platforms. The CSE
uses the device independent graphics package Open
GL for the implementation of the PGO and TCP/ IP
for data transport over Ethernet or ATM networks.
In our future work we aim at further improvement
and expansion of the CSE. The conceptual model
has proven to be simple and effective for users, hence
these enhancements must be hidden from the end
users. Firstly, the resource management can be im­
proved. All data sets are now routed via TCP /IP
connections to the data manager. For small data
sets this works well, for very large data sets more
efficient techniques are required. In particular,
a centralized data manager is not efficient for the
data movement of large data sets. Secondly, the
current CSE provides only support for direct steer­
ing. Additional tools that support the user with
automatic navigation in parameter spaces will be
developed. Thirdly, we will further explore novel
presentation techniques, especially for 30 simula­
tions. PGOs provide an excellent means for fast
implementation of icons, composite 30 interactors
and multiple scalar fields.

References

[1] B. McCormick, T. Dcfanti and M. Brown, Visualization in
scientific computing, Comput. Graplrlcs (SIGGRA.PH'88)
22(6) (1987) 103-111.

450 R. Van Liere et al./ Future Generation Computer System3 12 (1991) 441-450

(2) R.E. Marshall, J.L. Kempf. D. Scott Dyer and C-C Yen,
Visualization methods and simulation steering a 30 turbu­
lence model of La.kc Eric, 1990 Symp. on Interactive 3D
Graphics, Comput. Graphics 24(2) (1990) 89-97.

[3] JJ. van Wijk and R. van Lierc, An environment for com­
putational steering, Technical Report CS-R.9448, Centre
for Mathematics and Computer Science(CWI), 1994; Pres­
ented at the Dagstuhla Seminor on Scientific Visualization
(Germany) (23-27, May 1994) procc:edings to be published.

[4] R. van Lierc and J.J. van Wijk, CSE: A modular environ­
ment for computational steering, in: Proc. 7th Eurographics
Workshop on Visualization in Scientific Computing (Prague,
April 1996, eds. M. Gobel, J. David, P. Slavik and JJ. van
Wijk (Springer Berlin) 256-266.

[5] J. Mulder and J.J. van Wijk, 30 Computational steering
with parametriz.ed geometric objects, in: Proc. Visualization
'95 (IEEE computer Society Press, Los Alamitos, CA, 1995)
304-311.

[6] M. van Loon, Numerical methods in smog prediction,
Ph.D Thesis, University of Amsterdam, June 1996.

[7] P.W. Hemker, B. Koren, W.M. Lloen, M. Nool and H.T.M.
van der Maarel, Multigrid for steady gas dynamics prob­
lems, in: Euler and Navier-Stokes Solvers Using Multi­
Dimensional upwind Schemes and Multigrid Acceleration,
eds. H. Deconinck and B. Koren (Vieweg, Braunschwcig.
1996~

[8] C. Williams, J. Rasurc and C. Hansen, The state of the art of
visual languages for visualization in: Proc. Visualization'92
(1992) 202-209.

[9] W. Gu, J. Vetter and K. Schwan, An annotated bibliogra­
phy of interactive program steering, Technical Report GIT­
CC-94-15, Georgia Institute ofTecbnology, Atlanta, Geor­
gia, 1994.

[10] Exploter Development Team, Iris Explorer 2.0 Module
Writer's Guide, Technical Report 007-1369-020, Silicon
Graphics Inc. 1993.

[11) W. Ribarsky, E. Ayers, J. Eble and S. Mukherjea, Glyph­
makcr: Creating customized visuamation of complex data,
IEEE Comput. Graphics AppL 27(4) (1994) 57-64.

[12] L. Bergman, J. Richardson, D. Richardson and F. Brooks
Jr., VIEW- An exploratory molccularvisualization system
with user-definable interaction sequences, Comput.
Graphics (6(SIGGRAPH '93 (1993) 27 117-126.

Robert van Liere is a senior researcher
at the Center for Mathematics and
Computer Science CWI, where he leads
the High Performance Visualization
project. His main research interests arc
computational steering, and high per­
fonnancc visualization systems .. He re­
ceived bis MS in Computer Science from
Delft University of Technology.

Jarriaan D. Mlllder is a Ph.D. student
in Computer Science at the Centre for
Mathematics and Computer Science
CWI. He received bis MS in Computer
Science in 1993 from the Univemty of
Amsterdam. His cummt rcaearch inter­
ests include scientific visualimtion, com­
putational steering, (30) user interfaces,
and virtual reality.

Jarke J. van Wijk is a senior researcher
at the Netherlands EnerKY llcseuch
Foundation ECN, where lie leads the
ECN VisualiDtion Center. His current
research interests include interactive
simulation, Computational steering,
user-interfaces, Row visualimtion, and
texture synthesis. Van Wijk. received his
MS in industrial design enpnecring in
1982 and bis Ph.D. in computer science:
in 1986 from Delft University ofTechnol­
ogy. He is a member of Eurographics.

