11 research outputs found
Temperature-Dependent Order-Disorder Phenomena in Crystal Structures Containing Dimers of Carboxylic Acids: The Crystal and Molecular Structure of 3,5-Dinitrobenzoic Acid at Room and Liquid Nitrogen Temperature and Statistics of the Geometries of Hydrogen-Bonded Carboxyl Groups
3,5-dinitrobenzoic acid crystallizes in space group P2i/c with four molecules in the unit cell. At room temperature (RT), the cell dimensions are a = 10.0237(4), b = 8.8728(3), c = 9.5090(4) A, = 95.68(1)° and V = 841.56(6) A3 and at liquid nitrogen temperature (LNT) a = 9.761(2), b = 8.9192(4), c = 9.444(2) A, /S = 97.55(1)° and V = 815.1(2) A3. At both temperatures, the crystals contain the common centrosymmetric carboxylic acid dimers. At RT the carboxyl groups are partially disordered, as indicated by the C=0 [1.249(3)] and C-0 [1.276(2)A] distances, C-C = 0 [118.4(2)1 and C-C-0 [116.4(2)°] angles and by the presence of disordered H atoms with occupancy factors of 0.63 and 0.37 in the OâO hydrogen bond.
At LNT, the acidic proton is ordered with a distance of 0.96(2) A from the donor hydroxyl O atom and the carboxyl group geometry is normal, with C=0 1.232(2) and C-0 1.305(2) A and C-C = 0 120.6(1) and C-C-O 114.4(1)°.
The differences Ar distances and A of the C-C-O angles are 0.027 A and 2.0°, respectively, at RT and 0.073 A and 6.2°, respectively, at LNT, which indicates an increase of ordering with decreasing temperature. The mechanism of disordering most probably invokes a temperature-dependent concerted two-proton jump across the dimer hydrogen bonds. To test the relationship between Ar and A, a statistical analysis is performed on the C-0 distances and C-C-O angles of RT and LNT dimer and non-dimer structures retrieved from the Cambridge Structural Database. The analysis indicates that disorder in RT dimers is more frequent than in RT non-dimers and also that ordering is pronounced in both LT dimer and non-dimer structures
Population dynamics and genetic connectivity in recent chimpanzee history
The European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation program (grant agreement no. 864203) (to T.M.-B.). BFU2017-86471-P (MINECO/FEDER, UE) (to T.M.-B.). âUnidad de Excelencia MarĂa de Maeztuâ, funded by the AEI (CEX2018-000792-M) (to T.M.-B.). Howard Hughes International Early Career (to T.M.-B.). NIH 1R01HG010898-01A1 (to T.M.-B.). Secretaria dâUniversitats i Recerca and CERCA Program del Departament dâEconomia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) (to T.M.-B.). UCLâs Wellcome Trust ISSF3 award 204841/Z/16/Z (to A.M.A. and J.M.S.). Generalitat de Catalunya (2017 SGR-1040) (to M. Llorente). Wellcome Trust Investigator Award 202802/Z/16/Z (to D.A.H.). The Pan African Program: The Cultured Chimpanzee (PanAf) is generously funded by the Max Planck Society, the Max Planck Society Innovation Fund, and the Heinz L. Krekeler Foundation.Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.Publisher PDFPeer reviewe
Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)
BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)
Quantitative estimates of glacial refugia for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP).
Paleoclimate reconstructions have enhanced our understanding of how past climates have shaped present-day biodiversity. We hypothesize that the geographic extent of Pleistocene forest refugia and suitable habitat fluctuated significantly in time during the late Quaternary for chimpanzees (Pan troglodytes). Using bioclimatic variables representing monthly temperature and precipitation estimates, past human population density data, and an extensive database of georeferenced presence points, we built a model of changing habitat suitability for chimpanzees at fine spatio-temporal scales dating back to the Last Interglacial (120,000 BP). Our models cover a spatial resolution of 0.0467° (approximately 5.19âkm2 grid cells) and a temporal resolution of between 1000 and 4000 years. Using our model, we mapped habitat stability over time using three approaches, comparing our modeled stability estimates to existing knowledge of Afrotropical refugia, as well as contemporary patterns of major keystone tropical food resources used by chimpanzees, figs (Moraceae), and palms (Arecacae). Results show habitat stability congruent with known glacial refugia across Africa, suggesting their extents may have been underestimated for chimpanzees, with potentially up to approximately 60,000âkm2 of previously unrecognized glacial refugia. The refugia we highlight coincide with higher species richness for figs and palms. Our results provide spatio-temporally explicit insights into the role of refugia across the chimpanzee range, forming the empirical foundation for developing and testing hypotheses about behavioral, ecological, and genetic diversity with additional data. This methodology can be applied to other species and geographic areas when sufficient data are available
The spatio-temporal relationship between white matter lesion volume changes and brain atrophy in clinically isolated syndrome and early multiple sclerosis
Background: White matter lesions and brain atrophy are both present early in multiple sclerosis. However, the spatio-temporal relationship between atrophy and lesion processes remains unclear. Methods: Yearly magnetic resonance images were analyzed in 392 patients with clinically isolated syndrome from the 5-year REFLEX/REFLEXION studies. Patients received early treatment (from baseline; N = 262) or delayed treatment (from month-24; N = 130) with subcutaneous interferon beta-1a. Global and central atrophy were assessed using FSL-SIENA to provide yearly percentage volume change of brain and ventricles, respectively. Yearly total lesion volume change was calculated by subtracting the sum of the negative lesion volume change (disappearing + shrinking) from the positive lesion volume change (new + enlarging) for each yearly interval, as determined by an in-house developed semi-automated method. Using linear mixed models, during the period where patients had received â„1 year of treatment, we investigated whether total lesion volume change was associated with percentage brain volume change or percentage ventricular volume change in the next year, and vice versa. Results: Higher total lesion volume change was related to significantly faster global atrophy (percentage brain volume change) in the next year (B = â 0.113, SE = 0.022, p < 0.001). In patients receiving early treatment only, total lesion volume change was also associated with percentage ventricular volume change in the next year (B = 1.348, SE = 0.181, p < 0.001). Voxel-wise analyses showed that in patients receiving early treatment, higher total lesion volume change in years 2, 3, and 4 was related to faster atrophy in the next year, and in year 4 this relationship was stronger in patients receiving delayed treatment. Interestingly, faster atrophy was related to higher total lesion volume change in the next year (percentage brain volume change: B = â 0.136, SE = 0.062, p = 0.028; percentage ventricular volume change: B = 0.028, SE = 0.008, p < 0.001). Conclusions: Higher lesion volume changes were associated with faster atrophy in the next year. Interestingly, there was also an association between faster atrophy and higher lesion volume changes in the next year
The spatio-temporal relationship between white matter lesion volume changes and brain atrophy in clinically isolated syndrome and early multiple sclerosis
Background: White matter lesions and brain atrophy are both present early in multiple sclerosis. However, the spatio-temporal relationship between atrophy and lesion processes remains unclear. Methods: Yearly magnetic resonance images were analyzed in 392 patients with clinically isolated syndrome from the 5-year REFLEX/REFLEXION studies. Patients received early treatment (from baseline; N = 262) or delayed treatment (from month-24; N = 130) with subcutaneous interferon beta-1a. Global and central atrophy were assessed using FSL-SIENA to provide yearly percentage volume change of brain and ventricles, respectively. Yearly total lesion volume change was calculated by subtracting the sum of the negative lesion volume change (disappearing + shrinking) from the positive lesion volume change (new + enlarging) for each yearly interval, as determined by an in-house developed semi-automated method. Using linear mixed models, during the period where patients had received â„1 year of treatment, we investigated whether total lesion volume change was associated with percentage brain volume change or percentage ventricular volume change in the next year, and vice versa. Results: Higher total lesion volume change was related to significantly faster global atrophy (percentage brain volume change) in the next year (B = â 0.113, SE = 0.022, p < 0.001). In patients receiving early treatment only, total lesion volume change was also associated with percentage ventricular volume change in the next year (B = 1.348, SE = 0.181, p < 0.001). Voxel-wise analyses showed that in patients receiving early treatment, higher total lesion volume change in years 2, 3, and 4 was related to faster atrophy in the next year, and in year 4 this relationship was stronger in patients receiving delayed treatment. Interestingly, faster atrophy was related to higher total lesion volume change in the next year (percentage brain volume change: B = â 0.136, SE = 0.062, p = 0.028; percentage ventricular volume change: B = 0.028, SE = 0.008, p < 0.001). Conclusions: Higher lesion volume changes were associated with faster atrophy in the next year. Interestingly, there was also an association between faster atrophy and higher lesion volume changes in the next year
The spatio-temporal relationship between concurrent lesion and brain atrophy changes in early multiple sclerosis: A post-hoc analysis of the REFLEXION study
Background: White matter (WM) lesions and brain atrophy are present early in multiple sclerosis (MS). However, their spatio-temporal relationship remains unclear. Methods: Yearly magnetic resonance images were analysed in 387 patients with a first clinical demyelinating event (FCDE) from the 5-year REFLEXION study. Patients received early (from baseline; N = 258; ET) or delayed treatment (from month-24; N = 129; DT) with subcutaneous interferon beta-1a. FSL-SIENA/VIENA were used to provide yearly percentage volume change of brain (PBVC) and ventricles (PVVC). Yearly total lesion volume change (TLVC) was determined by a semi-automated method. Using linear mixed models and voxel-wise analyses, we firstly investigated the overall relationship between TLVC and PBVC and between TLVC and PVVC in the same follow-up period. Analyses were then separately performed for: the untreated period of DT patients (first two years), the first year of treatment (year 1 for ET and year 3 for DT), and a period where patients had received at least 1 year of treatment (stable treatment; ET: years 2, 3, 4, and 5; DT: years 4 and 5). Results: Whole brain: across the whole study period, lower TLVC was related to faster atrophy (PBVC: B = 0.046, SE = 0.013, p < 0.001; PVVC: B = â0.466, SE = 0.118, p < 0.001). Within the untreated period of DT patients, lower TLVC was related to faster atrophy (PBVC: B = 0.072, SE = 0.029, p = 0.013; PVVC: B = â0.917, SE = 0.306, p = 0.003). A similar relationship was found within the first year of treatment of ET patients (PBVC: B = 0.081, SE = 0.027, p = 0.003; PVVC: B = â1.08, SE = 0.284, p < 0.001), consistent with resolving oedema and pseudo-atrophy.Voxel-wise: overall, higher TLVC was related to faster ventricular enlargement. Lower TLVC was related to faster widespread atrophy in year 1 in both ET (first year of treatment) and DT (untreated) patients. In the second untreated year of DT patients and within the stable treatment period of ET patients (year 4), faster periventricular and occipital lobe atrophy was associated with higher TLVC. Conclusions: WM lesion changes and atrophy occurred simultaneously in early MS. Spatio-temporal correspondence of these two processes involved mostly the periventricular area. Within the first year of the study, in both treatment groups, faster atrophy was linked to lower lesion volume changes, consistent with higher shrinking and disappearing lesion activity. This might reflect the pseudo-atrophy phenomenon that is probably related to the therapy driven (only in ET patients, as they received treatment from baseline) and ânaturalâ (both ET and DT patients entered the study after a FCDE) resolution of oedema. In an untreated period and later on during stable treatment, (real) atrophy was related to higher lesion volume changes, consistent with increased new and enlarging lesion activity
Structure of Chimpanzee Gut Microbiomes across Tropical Africa
Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution