117 research outputs found
Partial Structure and Mapping of the Human Myelin P 2 Protein Gene
The myelin P 2 protein, a 14,800-Da cytosolic protein found primarily in peripheral nerves, belongs to a family of fatty acid binding proteins. Although it is similar in amino acid sequence and tertiary structure to fatty acid binding proteins found in the liver, adipocytes, and intestine, its expression is limited to the nervous system. It is detected only in myelin-producing cells of the central and peripheral nervous systems, i.e., the oligodendrocytes and Schwann cells, respectively. As part of a program to understand the regulation of expression of this gene, to determine its function in myelin-producing cells, and to study its role in peripheral nerve disease, we have isolated and characterized overlapping human genomic clones encoding the P 2 protein. We report here on the partial structure of this gene, and on its localization within the genome. By using a panel of human-hamster somatic cell hybrids and by in situ hybridization, we have mapped the human P 2 gene to segment q21 on the long arm of chromosome 8. This result identifies the myelin P 2 gene as a candidate gene for autosomal recessive Charcot-Marie-Tooth disease type 4A.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65484/1/j.1471-4159.1994.63062010.x.pd
FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models
The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development
The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization
Aquaporin-CHIP is the first known molecular water channel. Originally identified in red cells and renal tubules, transcripts and proteins related to AQP-CHIP are also expressed in diverse epithelia with distinct developmental patterns. Northern analyses of RNA from several tissues revealed transcripts of 3.1 kilobases and other sizes. The nucleotide sequences of human kidney AQP-CHIP cDNAs are identical to the human bone marrow AQP-CHIP cDNA. The 17-kilobase human AQP-CHIP structural gene was isolated, and restriction maps were constructed and partially sequenced. The TATA consensus sequence is located 87 bp 5' to the translation initiation site, and sequences surrounding the polyadenylation consensus were determined. Four exons were identified corresponding to amino acids 1-128, 129-183, 184-210, and 211-269, separated by introns of 9.6, 0.43, and 0.80 kilobases. Genomic Southern analyses indicated the existence of a single AQP-CHIP gene which was located at human chromosome 7p14 by in situ hybridization. Sequence comparisons of AQP-CHIP and cDNAs of similar proteins from diverse species suggested a common evolutionary origin. At least three of these proteins are now known to function as membrane water pores and are referred to as the "Aquaporins." These genomic AQP-CHIP DNA sequences should permit molecular characterization of the complex patterns of AQP-CHIP expression
A uniform estimate for an equation with Holderian condition and boundary singularity
We give a blow-up analysis and a compactness result for an equation with
Holderian condition and boundary singularity.Comment: arXiv admin note: substantial text overlap with arXiv:1302.0657,
arXiv:1309.158
Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+P253R mice
<p>Abstract</p> <p>Background</p> <p>Apert syndrome is characterized by craniosynostosis and limb abnormalities and is primarily caused by FGFR2 +/P253R and +/S252W mutations. The former mutation is present in approximately one third whereas the latter mutation is present in two-thirds of the patients with this condition. We previously reported an inbred transgenic mouse model with the Fgfr2 +/S252W mutation on the C57BL/6J background for Apert syndrome. Here we present a mouse model for the Fgfr2+/P253R mutation.</p> <p>Results</p> <p>We generated inbred <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice on the same C56BL/6J genetic background and analyzed their skeletal abnormalities. 3D micro-CT scans of the skulls of the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice revealed that the skull length was shortened with the length of the anterior cranial base significantly shorter than that of the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice at P0. The <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice presented with synostosis of the coronal suture and proximate fronts with disorganized cellularity in sagittal and lambdoid sutures. Abnormal osteogenesis and proliferation were observed at the developing coronal suture and long bones of the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>mice as in the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice. Activation of mitogen-activated protein kinases (MAPK) was observed in the <it>Fgfr2</it><sup>+/<it>P253R </it></sup>neurocranium with an increase in phosphorylated p38 as well as ERK1/2, whereas phosphorylated AKT and PKCα were not obviously changed as compared to those of wild-type controls. There were localized phenotypic and molecular variations among individual embryos with different mutations and among those with the same mutation.</p> <p>Conclusions</p> <p>Our <it>in vivo </it>studies demonstrated that the Fgfr2 +/P253R mutation resulted in mice with cranial features that resemble those of the <it>Fgfr2</it><sup>+/<it>S252W </it></sup>mice and human Apert syndrome. Activated p38 in addition to the ERK1/2 signaling pathways may mediate the mutant neurocranial phenotype. Though Apert syndrome is traditionally thought to be a consistent phenotype, our results suggest localized and regional variations in the phenotypes that characterize Apert syndrome.</p
Joint testing of genotypic and gene-environment interaction identified novel association for BMP4 with non-syndromic CL/P in an Asian population using data from an International Cleft Consortium
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common disorder with complex etiology. The Bone Morphogenetic Protein 4 gene (BMP4) has been considered a prime candidate gene with evidence accumulated from animal experimental studies, human linkage studies, as well as candidate gene association studies. The aim of the current study is to test for linkage and association between BMP4 and NSCL/P that could be missed in genome-wide association studies (GWAS) when genotypic (G) main effects alone were considered.We performed the analysis considering G and interactions with multiple maternal environmental exposures using additive conditional logistic regression models in 895 Asian and 681 European complete NSCL/P trios. Single nucleotide polymorphisms (SNPs) that passed the quality control criteria among 122 genotyped and 25 imputed single nucleotide variants in and around the gene were used in analysis. Selected maternal environmental exposures during 3 months prior to and through the first trimester of pregnancy included any personal tobacco smoking, any environmental tobacco smoke in home, work place or any nearby places, any alcohol consumption and any use of multivitamin supplements. A novel significant association held for rs7156227 among Asian NSCL/P and non-syndromic cleft lip and palate (NSCLP) trios after Bonferroni correction which was not seen when G main effects alone were considered in either allelic or genotypic transmission disequilibrium tests. Odds ratios for carrying one copy of the minor allele without maternal exposure to any of the four environmental exposures were 0.58 (95%CI = 0.44, 0.75) and 0.54 (95%CI = 0.40, 0.73) for Asian NSCL/P and NSCLP trios, respectively. The Bonferroni P values corrected for the total number of 117 tested SNPs were 0.0051 (asymptotic P = 4.39*10(-5)) and 0.0065 (asymptotic P = 5.54*10(-5)), accordingly. In European trios, no significant association was seen for any SNPs after Bonferroni corrections for the total number of 120 tested SNPs.Our findings add evidence from GWAS to support the role of BMP4 in susceptibility to NSCL/P originally identified in linkage and candidate gene association studies
Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation
Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling
The Ups and Downs of Mutation Frequencies during Aging Can Account for the Apert Syndrome Paternal Age Effect
Apert syndrome is almost always caused by a spontaneous mutation of paternal origin in one of two nucleotides in the fibroblast growth factor receptor 2 gene (FGFR2). The incidence of this disease increases with the age of the father (paternal age effect), and this increase is greater than what would be expected based on the greater number of germ-line divisions in older men. We use a highly sensitive PCR assay to measure the frequencies of the two causal mutations in the sperm of over 300 normal donors with a wide range of ages. The mutation frequencies increase with the age of the sperm donors, and this increase is consistent with the increase in the incidence rate. In both the sperm data and the birth data, the increase is non-monotonic. Further, after normalizing for age, the two Apert syndrome mutation frequencies are correlated within individual sperm donors. We consider a mathematical model for germ-line mutation which reproduces many of the attributes of the data. This model, with other evidence, suggests that part of the increase in both the sperm data and the birth data is due to selection for mutated premeiotic cells. It is likely that a number of other genetic diseases have similar features
Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate
Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10-6<P<10-4) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10-7 in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10-7 and P = 1.98×10-7 in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP. © 2014 Wu et al
- …