317 research outputs found

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Identification of patients at risk for early death after conventional chemotherapy in solid tumours and lymphomas

    Get PDF
    1–5% of cancer patients treated with cytotoxic chemotherapy die within a month after the administration of chemotherapy. Risk factors for these early deaths (ED) are not well known. The purpose of this study was to establish a risk model for ED after chemotherapy applicable to all tumour types. The model was delineated in a series of 1051 cancer patients receiving a first course of chemotherapy in the Department of Medicine of the Centre LΓ©on BΓ©rard (CLB) in 1996 (CLB-1996 cohort), and then validated in a series of patients treated in the same department in 1997 (CLB-1997), in a prospective cohort of patients with aggressive non-Hodgkin's lymphoma (NHL) (CLB-NHL), and in a prospective cohort of patients with metastatic breast cancer (MBC series) receiving first-line chemotherapy. In the CLB-1996 series, 43 patients (4.1%) experienced early. In univariate analysis, age > 60, PS > 1, lymphocyte (ly) count ≀ 700β€ˆΞΌlβˆ’1 immediately prior to chemotherapy (d1), d1-platelet count ≀ 150β€ˆGlβˆ’1, and the type of chemotherapy were significantly correlated to the risk of early death (P ≀ 0.01). Using logistic regression, PS > 1 (hazard ratio 3.9 (95% Cl 2.0–7.5)) and d1-ly count ≀ 700β€ˆΞΌlβˆ’1 (3.1 (95% Cl 1.6–5.8)) were identified as independent risk factors for ED. The calculated probability of ED was 20% (95% Cl 10–31) in patients with both risk factors, 6% (95% Cl 4–9) for patients with only 1 risk factor, and 1.7% (95% Cl 0.9–3) for patients with none of these 2 risk factors. In the CLB-97, CLB-NHL and MBC validation series, the observed incidences of early death in patients with both risk factors were 19%, 25% and 40% respectively and did not differ significantly from those calculated in the model. In conclusion, poor performance status and lymphopenia identify a subgroup of patients at high risk for early death after chemotherapy. Β© 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Evidence for Impaired CARD15 Signalling in Crohn's Disease without Disease Linked Variants

    Get PDF
    BACKGROUND:Sensing of muramyl dipeptide (MDP) is impaired in Crohn's disease (CD) patients with disease-linked variants of the CARD15 (caspase activation and recruitment domain 15) gene. Animal studies suggest that normal CARD15 signalling prevents inflammatory bowel disease, and may be important for disease development in CD. However, only a small fraction of CD patients carry the disease linked CARD15 variants. The aim of this study was thus to investigate if changes could be found in CARD15 signalling in patients without disease associated CARD15 variants. METHODOLOGY/PRINCIPAL FINDINGS:By mapping the response to MDP in peripheral monocytes obtained from CD patients in remission not receiving immunosuppresives, an impaired response to MDP was found in patients without disease linked CARD15 variants compared to control monocytes. This impairment was accompanied by a decreased activation of IkappaB kinase alpha/beta (IKKalpha/beta), the initial step in the nuclear factor kappaB (NFkappaB) pathway, whereas activation of mitogen-activated protein (MAP)-kinases was unaffected. MDP additionally stimulates the inflammasome which is of importance for processing of cytokines. The inflammasome was constitutively activated in CD, but unresponsive to MDP both in CD and control monocytes. CONCLUSIONS/SIGNIFICANCE:These results suggest that inhibited MDP-dependent pathways in CD patients not carrying the disease-associated CARD15 variants might be of importance for the pathogenesis of CD. The results reveal a dysfunctional immune response in CD patients, not able to sense relevant stimuli on the one hand, and on the other hand possessing constitutively active cytokine processing

    A functional perspective on machine learning via programmable induction and abduction

    Get PDF
    We present a programming language for machine learning based on the concepts of β€˜induction’ and β€˜abduction’ as encountered in Peirce’s logic of science. We consider the desirable features such a language must have, and we identify the β€˜abductive decoupling’ of parameters as a key general enabler of these features. Both an idealised abductive calculus and its implementation as a PPX extension of OCaml are presented, along with several simple examples

    Biological-effective versus conventional dose volume histograms correlated with late genitourinary and gastrointestinal toxicity after external beam radiotherapy for prostate cancer: a matched pair analysis

    Get PDF
    BACKGROUND: To determine whether the dose-volume histograms (DVH's) for the rectum and bladder constructed using biological-effective dose (BED-DVH's) better correlate with late gastrointestinal (GI) and genitourinary (GU) toxicity after treatment with external beam radiotherapy for prostate cancer than conventional DVH's (C-DVH's). METHODS: The charts of 190 patients treated with external beam radiotherapy with a minimum follow-up of 2 years were reviewed. Six patients (3.2%) were found to have RTOG grade 3 GI toxicity, and similarly 6 patients (3.2%) were found to have RTOG grade 3 GU toxicity. Average late C-DVH's and BED-DVH's of the bladder and rectum were computed for these patients as well as for matched-pair control patients. For each matched pair the following measures of normalized difference in the DVH's were computed: (a) Ξ΄(AUC )= (Area Under Curve [AUC] in grade 3 patient – AUC in grade 0 patient)/(AUC in grade 0 patient) and (b) Ξ΄(V60 )= (Percent volume receiving = 60 Gy [V60] in grade 3 patient – V60 in grade 0 patient)/(V60 in grade 0 patient). RESULTS: As expected, the grade 3 curve is to the right of and above the grade 0 curve for all four sets of average DVH's – suggesting that both the C-DVH and the BED-DVH can be used for predicting late toxicity. Ξ΄(AUC )was higher for the BED-DVH's than for the C-DVH's – 0.27 vs 0.23 (p = 0.036) for the rectum and 0.24 vs 0.20 (p = 0.065) for the bladder. Ξ΄(V60 )was also higher for the BED-DVH's than for the C-DVH's – 2.73 vs 1.49 for the rectum (p = 0.021) and 1.64 vs 0.71 (p = 0.021) for the bladder. CONCLUSIONS: When considering well-established dosimetric endpoints used in evaluating treatment plans, BED-DVH's for the rectum and bladder correlate better with late toxicity than C-DVH's and should be considered when attempting to minimize late GI and GU toxicity after external beam radiotherapy for prostate cancer

    P27Kip1, regulated by glycogen synthase kinase-3Ξ², results in HMBA-induced differentiation of human gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is the second most common cause of global cancer-related mortality. Although dedifferentiation predicts poor prognosis in gastric cancer, the molecular mechanism underlying dedifferentiation, which could provide fundamental insights into tumor development and progression, has yet to be elucidated. Furthermore, the molecular mechanism underlying the effects of hexamethylene bisacetamide (HMBA), a recently discovered differentiation inducer, requires investigation and there are no reported studies concerning the effect of HMBA on gastric cancer.</p> <p>Methods</p> <p>Based on the results of FACS analysis, the levels of proteins involved in the cell cycle or apoptosis were determined using western blotting after single treatments and sequential combinations of HMBA and LiCl. GSK-3Ξ² and proton pump were investigated by western blotting after up-regulating Akt expression by Ad-Akt infection. To investigate the effects of HMBA on protein localization and the activities of GSK-3Ξ², CDK2 and CDK4, kinase assays, immunoprecipitation and western blotting were performed. In addition, northern blotting and RNase protection assays were carried out to determine the functional concentration of HMBA.</p> <p>Results</p> <p>HMBA increased p27Kip1 expression and induced cell cycle arrest associated with gastric epithelial cell differentiation. In addition, treating gastric-derived cells with HMBA induced G0/G1 arrest and up-regulation of the proton pump, a marker of gastric cancer differentiation. Moreover, treatment with HMBA increased the expression and activity of GSK-3Ξ² in the nucleus but not the cytosol. HMBA decreased CDK2 activity and induced p27Kip1 expression, which could be rescued by inhibition of GSK-3Ξ². Furthermore, HMBA increased p27Kip1 binding to CDK2, and this was abolished by GSK-3Ξ² inhibition.</p> <p>Conclusions</p> <p>The results presented herein suggest that GSK-3Ξ² functions by regulating p27Kip1 assembly with CDK2, thereby playing a critical role in G0/G1 arrest associated with HMBA-induced gastric epithelial cell differentiation.</p

    FRET-Based Identification of mRNAs Undergoing Translation

    Get PDF
    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed

    Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer

    Get PDF
    Despite optimal radiation therapy (RT), chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC) fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80–90% decrease in homologous recombination (HR), a 50% decrease in expression of NF-ΞΊB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IΞΊBΞ± RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-ΞΊB-mediated expression of Fanconi Anemia/HR DNA repair genes.American Society for Radiation Oncology (Junior Faculty Career Research Training Award)Harvard University. Joint Center for Radiation Therapy (Foundation Grant)Dana-Farber/Harvard Cancer Center (SPORE Developmental Research Project Award in Lung Cancer Research)National Cancer Institute (U.S.) (Award K08CA172354

    Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104)

    Get PDF
    BACKGROUND: Multiple farnesylated proteins are involved in signal transduction in cancer. Farnesyltransferase inhibitors (FTIs) have been developed as a strategy to inhibit the function of these proteins. As FTIs inhibit proliferation of melanoma cell lines, we undertook a study to assess the impact of a FTI in advanced melanoma. As farnesylated proteins are also important for T cell activation, measurement of effects on T cell function was also pursued. METHODS: A 3-stage trial design was developed with a maximum of 40 patients and early stopping if there were no responders in the first 14, or fewer than 2 responders in the first 28 patients. Eligibility included performance status of 0–1, no prior chemotherapy, at most 1 prior immunotherapy, no brain metastases, and presence of at least 2 cutaneous lesions amenable to biopsy. R115777 was administered twice per day for 21 days of a 28-day cycle. Patients were evaluated every 2 cycles by RECIST. Blood and tumor were analyzed pre-treatment and during week 7. RESULTS: Fourteen patients were enrolled. Two patients had grade 3 toxicities, which included myelosuppression, nausea/vomiting, elevated BUN, and anorexia. There were no clinical responses. All patients analyzed showed potent inhibition of FT activity (85-98%) in tumor tissue; inhibition of phosphorylated ERK and Akt was also observed. T cells showed evidence of FT inhibition and diminished IFN-Ξ³ production. CONCLUSIONS: Despite potent target inhibition, R115777 showed no evidence of clinical activity in this cohort of melanoma patients. Inhibition of T cell function by FTIs has potential clinical implications. Clinicaltrials.gov number NCT0006012
    • …
    corecore