334 research outputs found
Can modern infrared analyzers replace gas chromatography to measure anesthetic vapor concentrations?
<p>Abstract</p> <p>Background</p> <p>Gas chromatography (GC) has often been considered the most accurate method to measure the concentration of inhaled anesthetic vapors. However, infrared (IR) gas analysis has become the clinically preferred monitoring technique because it provides continuous data, is less expensive and more practical, and is readily available. We examined the accuracy of a modern IR analyzer (M-CAiOV compact gas IR analyzer (General Electric, Helsinki, Finland) by comparing its performance with GC.</p> <p>Methods</p> <p>To examine linearity, we analyzed 3 different concentrations of 3 different agents in O<sub>2</sub>: 0.3, 0.7, and 1.2% isoflurane; 0.5, 1, and 2% sevoflurane; and 1, 3, and 6% desflurane. To examine the effect of carrier gas composition, we prepared mixtures of 1% isoflurane, 1 or 2% sevoflurane, or 6% desflurane in 100% O<sub>2 </sub>(= O<sub>2 </sub>group); 30%O<sub>2</sub>+ 70%N<sub>2</sub>O (= N<sub>2</sub>O group), 28%O<sub>2 </sub>+ 66%N<sub>2</sub>O + 5%CO<sub>2 </sub>(= CO<sub>2 </sub>group), or air. To examine consistency between analyzers, four different M-CAiOV analyzers were tested.</p> <p>Results</p> <p>The IR analyzer response in O<sub>2 </sub>is linear over the concentration range studied: IR isoflurane % = -0.0256 + (1.006 * GC %), R = 0.998; IR sevoflurane % = -0.008 + (0.946 * GC %), R = 0.993; and IR desflurane % = 0.256 + (0.919 * GC %), R = 0.998. The deviation from GC calculated as (100*(IR-GC)/GC), in %) ranged from -11 to 11% for the medium and higher concentrations, and from -20 to +20% for the lowest concentrations. No carrier gas effect could be detected. Individual modules differed in their accuracy (p = 0.004), with differences between analyzers mounting up to 12% of the medium and highest concentrations and up to 25% of the lowest agent concentrations.</p> <p>Conclusion</p> <p>M-CAiOV compact gas IR analyzers are well compensated for carrier gas cross-sensitivity and are linear over the range of concentrations studied. IR and GC cannot be used interchangeably, because the deviations between GC and IR mount up to ± 20%, and because individual analyzers differ unpredictably in their performance.</p
The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>Pulse oximetry is routinely used to continuously and noninvasively monitor arterial oxygen saturation (SaO<sub>2</sub>) in critically ill patients. Although pulse oximeter oxygen saturation (SpO<sub>2</sub>) has been studied in several patient populations, including the critically ill, its accuracy has never been studied in emergency department (ED) patients with severe sepsis and septic shock. Sepsis results in characteristic microcirculatory derangements that could theoretically affect pulse oximeter accuracy. The purposes of the present study were twofold: 1) to determine the accuracy of pulse oximetry relative to SaO2 obtained from ABG in ED patients with severe sepsis and septic shock, and 2) to assess the impact of specific physiologic factors on this accuracy.</p> <p>Methods</p> <p>This analysis consisted of a retrospective cohort of 88 consecutive ED patients with severe sepsis who had a simultaneous arterial blood gas and an SpO<sub>2 </sub>value recorded. Adult ICU patients that were admitted from any Calgary Health Region adult ED with a pre-specified, sepsis-related admission diagnosis between October 1, 2005 and September 30, 2006, were identified. Accuracy (SpO<sub>2 </sub>- SaO<sub>2</sub>) was analyzed by the method of Bland and Altman. The effects of hypoxemia, acidosis, hyperlactatemia, anemia, and the use of vasoactive drugs on bias were determined.</p> <p>Results</p> <p>The cohort consisted of 88 subjects, with a mean age of 57 years (19 - 89). The mean difference (SpO<sub>2 </sub>- SaO<sub>2</sub>) was 2.75% and the standard deviation of the differences was 3.1%. Subgroup analysis demonstrated that hypoxemia (SaO<sub>2 </sub>< 90) significantly affected pulse oximeter accuracy. The mean difference was 4.9% in hypoxemic patients and 1.89% in non-hypoxemic patients (p < 0.004). In 50% (11/22) of cases in which SpO<sub>2 </sub>was in the 90-93% range the SaO2 was <90%. Though pulse oximeter accuracy was not affected by acidoisis, hyperlactatementa, anemia or vasoactive drugs, these factors worsened precision.</p> <p>Conclusions</p> <p>Pulse oximetry overestimates ABG-determined SaO<sub>2 </sub>by a mean of 2.75% in emergency department patients with severe sepsis and septic shock. This overestimation is exacerbated by the presence of hypoxemia. When SaO<sub>2 </sub>needs to be determined with a high degree of accuracy arterial blood gases are recommended.</p
Recommended from our members
In vivo investigation of ear canal pulse oximetry during hypothermia
Pulse oximeters rely on the technique of photoplethysmography (PPG) to estimate arterial oxygen saturation (SpO(Formula presented.)). In conditions of poor peripheral perfusion such as hypotension, hypothermia, and vasoconstriction, the PPG signals detected are often weak and noisy, or in some cases unobtainable. Hence, pulse oximeters produce erroneous SpO(Formula presented.) readings in these circumstances. The problem arises as most commercial pulse oximeter probes are designed to be attached to peripheral sites such as the finger or toe, which are easily affected by vasoconstriction. In order to overcome this problem, the ear canal was investigated as an alternative site for measuring reliable SpO(Formula presented.) on the hypothesis that blood flow to this central site is preferentially preserved. A novel miniature ear canal PPG sensor was developed along with a state of the art PPG processing unit to investigate PPG measurements from the bottom surface of the ear canal. An in vivo study was carried out in 15 healthy volunteers to validate the developed technology. In this comparative study, red and infrared PPGs were acquired from the ear canal and the finger of the volunteers, whilst they were undergoing artificially induced hypothermia by means of cold exposure (10 (Formula presented.)C). Normalised Pulse Amplitude (NPA) and SpO(Formula presented.) was calculated from the PPG signals acquired from the ear canal and the finger. Good quality baseline PPG signals with high signal-to-noise ratio were obtained from both the PPG sensors. During cold exposure, significant differences were observed in the NPA of the finger PPGs. The mean NPA of the red and infrared PPGs from the finger have dropped by >80%. Contrary to the finger, the mean NPA of red and infrared ear canal PPGs had dropped only by 0.2 and 13% respectively. The SpO(Formula presented.)s estimated from the finger sensor have dropped below 90% in five volunteers (failure) by the end of the cold exposure. The ear canal sensor, on the other hand, had only failed in one volunteer. These results strongly suggest that the ear canal may be used as a suitable alternative site for monitoring PPGs and arterial blood oxygen saturation at times were peripheral perfusion is compromised
Non-Invasive Measurement of Hemoglobin: Assessment of Two Different Point-of-Care Technologies
Measurement of blood hemoglobin (Hb) concentration is a routine procedure. Using a non-invasive point-of-care device reduces pain and discomfort for the patient and allows time saving in patient care. The aims of the present study were to assess the concordance of Hb levels obtained non-invasively with the Pronto-7 monitor (version 2.1.9, Masimo Corporation, Irvine, USA) or with the NBM-200MP monitor (Orsense, Nes Ziona, Israel) and the values obtained from the usual colorimetric method using blood samples and to determine the source of discordance.We conducted two consecutive prospective open trials enrolling patients presenting in the emergency department of a university hospital. The first was designed to assess Pronto-7™ and the second NBM-200MP™. In each study, the main outcome measure was the agreement between both methods. Independent factors associated with the bias were determined using multiple linear regression. Three hundred patients were prospectively enrolled in each study. For Pronto-7™, the absolute mean difference was 0.56 g.L(-1) (95% confidence interval [CI] 0.41 to 0.69) with an upper agreement limit at 2.94 g.L(-1) (95% CI [2.70;3.19]), a lower agreement limit at -1.84 g.L(-1) (95% CI [-2.08;-1.58]) and an intra-class correlation coefficient at 0.80 (95% CI [0.74;0.84]). The corresponding values for the NBM-200MP™ were 0.21 [0.02;0.39], 3.42 [3.10;3.74], -3.01 [-3.32;-2.69] and 0.69 [0.62;0.75]. Multivariate analysis showed that age and laboratory values of hemoglobin were independently associated with the bias when using Pronto-7™, while perfusion index and laboratory value of hemoglobin were independently associated with the bias when using NBM-200MP™.Despite a relatively limited bias in both cases, the large limits of agreement found in both cases render the clinical usefulness of such devices debatable. For both devices, the bias is independently and inversely associated with the true value of hemoglobin.ClinicalTrials.gov NCT01321580 and NCT01321593
Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition
<div><p>Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.</p></div
Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA
The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process
Transcutaneous flow related variables measured in vivo: the effects of gender
BACKGOUND: The identification of potential sources of error is a crucial step for any new assessment technique. This is the case for transcutaneous variables, such as flow and arterial gases, which have been applied as functional indicators of various aspects of human health. Regarding gender, a particular subject-related determinant, it is often claimed that women present higher transcutaneous oxygen pressure (tcpO(2)) values than men. However, the statistical significance of this finding is still uncertain. METHODS: The haemodynamical-vascular response to a local reactive hyperaemia procedure (the tourniquet cuff manoeuvre) was studied in two previously selected group of volunteers (n = 16; 8 women and 8 men). The effect of gender was assessed under standardised experimental conditions, using the transcutaneous flow-related variables tcpO(2)-tcpCO(2) and Laser-doppler Flowmetry (LDF). RESULTS: Regarding tcpO(2), statistically significant differences between genders were not found, although higher values were consistently found for the gases in the female group. Regarding LDF, high statistically significant differences (p < 0.005) were found, with the men's group presenting the highest values and variability. Other derived parameters used to characterise the vascular response following the cuff-deflation (t-peak) were similar in both groups. CONCLUSIONS: The relative influence of gender was not clearly demonstrated using these experimental conditions. However the gender-related LDF differences suggest that further investigation should be done on this issue. Perhaps in the presence of certain pathological disparities involving peripheral vascular regulation, other relationships may be found between these variables
A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants
Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia
- …