3,331 research outputs found

    Strongly Enhanced Second- and Third-harmonic Generation in Graphene Metasurfaces

    Get PDF

    Comparison Between the Linear and Nonlinear Homogenization of Graphene and Silicon Metasurfaces

    Get PDF
    In this article, we use a versatile homogenization approach to model the linear and nonlinear optical response of two metasurfaces: a plasmonic metasurface consisting of graphene patches and a dielectric photonic nanostructure consisting of silicon photonic crystal (PhC) cavities. The former metasurface is resonant at wavelengths that are much larger than the graphene elements of the metasurface, whereas the resonance wavelengths of the latter one are comparable to the size of its resonant components. By computing and comparing the effective permittivities and nonlinear susceptibilities of the two metasurfaces, we infer some general principles regarding the conditions under which homogenization methods of metallic and dielectric metasurfaces are valid. In particular, we show that in the case of the graphene metasurface the homogenization method describes very well both its linear and nonlinear optical properties, whereas in the case of the silicon photonic nanostructure the homogenization method is only qualitatively accurate, especially near the optical resonances

    Large enhancement of the effective second-order nonlinearity in graphene metasurfaces

    Get PDF
    Using a powerful homogenization technique, one- and two-dimensional graphene metasurfaces are homogenized both at the fundamental frequency (FF) and second harmonic (SH). In both cases, there is excellent agreement between the predictions of the homogenization method and those based on rigorous numerical solutions of Maxwell equations. The homogenization technique is then employed to demonstrate that, owing to a double-resonant plasmon excitation mechanism that leads to strong, simultaneous field enhancement at the FF and SH, the effective second-order susceptibility of graphene metasurfaces can be enhanced by more than three orders of magnitude as compared to the intrinsic second-order susceptibility of a graphene sheet placed on the same substrate. In addition, we explore the implications of our results on the development of new active nanodevices that incorporate nanopatterned graphene structures

    Giant enhancement of the effective Raman susceptibility in metasurfaces made of silicon photonic crystal nanocavities

    Get PDF
    We demonstrate that stimulated Raman amplification can be enhanced by more than four orders of magnitude in a silicon metasurface consisting of a periodic distribution of specially engineered photonic crystal (PhC) cavities in a silicon PhC slab waveguide. In particular, by designing the PhC cavities so as they possess two optical modes separated by the Raman frequency of silicon, one can achieve large optical field enhancement at both the pump and Stokes frequencies. As a consequence, the effective Raman susceptibility of the nonlinear metasurface, calculated using a novel homogenization technique, is significantly larger than the intrinsic Raman susceptibility of silicon. Implications to technological applications of our theoretical study are discussed, too

    Gender Dimorphism of the Cardiac Dysfunction in Murine Sepsis: Signalling Mechanisms and Age-Dependency

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.JC is supported by a jointly funded PhD-studentship of the China Scholarship Council (grant number 201206240146) and Queen Mary University of London (QMUL). SMC is supported by a Research Fellowship of the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG CO 912/1-1). NSAP is, in part, supported by the Bart’s and The London Charity (753/1722). This work is supported, in part, by the William Harvey Research Foundation and by a grant from the University of Turin (Ricerca Locale ex-60% 2013). This work forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute of Health Research. This work also contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences, supported by the Barts and The London Charity (Award 753/1722)

    Random attractors for degenerate stochastic partial differential equations

    Full text link
    We prove the existence of random attractors for a large class of degenerate stochastic partial differential equations (SPDE) perturbed by joint additive Wiener noise and real, linear multiplicative Brownian noise, assuming only the standard assumptions of the variational approach to SPDE with compact embeddings in the associated Gelfand triple. This allows spatially much rougher noise than in known results. The approach is based on a construction of strictly stationary solutions to related strongly monotone SPDE. Applications include stochastic generalized porous media equations, stochastic generalized degenerate p-Laplace equations and stochastic reaction diffusion equations. For perturbed, degenerate p-Laplace equations we prove that the deterministic, infinite dimensional attractor collapses to a single random point if enough noise is added.Comment: 34 pages; The final publication is available at http://link.springer.com/article/10.1007%2Fs10884-013-9294-

    Intra-tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas

    Get PDF
    Background: Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Methods and Findings: Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity’s associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished outcomes among patients having oral-cavity or laryngeal cancers even when standard disease staging was taken into account. Prospective studies, however, will be required before MATH can be used prognostically in clinical trials or practice. Such studies will need to examine homogeneously treated HNSCC at specific head and neck subsites, and determine the influence of cancer therapy on MATH values. Analysis of MATH and outcome in human-papillomavirus-positive oropharyngeal squamous cell carcinoma is particularly needed. Conclusions: To our knowledge this study is the first to combine data from hundreds of patients, treated at multiple institutions, to document a relation between intra-tumor heterogeneity and overall survival in any type of cancer. We suggest applying the simply calculated MATH metric of heterogeneity to prospective studies of HNSCC and other tumor types

    Four small puzzles that Rosetta doesn't solve

    Get PDF
    A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on deceptively small protein and RNA puzzles, some as small as four residues. To illustrate these problems, this manuscript presents extensive Rosetta results for four well-defined test cases: the 20-residue mini-protein Trp cage, an even smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies, several lines of evidence indicate that conformational sampling is not the major bottleneck in modeling these small systems. Instead, approximations and omissions in the Rosetta all-atom energy function currently preclude discriminating experimentally observed conformations from de novo models at atomic resolution. These molecular "puzzles" should serve as useful model systems for developers wishing to make foundational improvements to this powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special Collectio

    Class II Division 1 malocclusion treatment with extraction of maxillary first molars:Evaluation of treatment and post-treatment changes by the PAR Index

    Get PDF
    OBJECTIVE To investigate occlusal result and post-treatment changes after orthodontic extraction of maxillary first permanent molars in patients with a Class II division 1 malocclusion. SETTING AND SAMPLE Retrospective longitudinal study in a private practice, with outcome evaluation by an independent academic hospital. Ninety-six patients (53 males, 43 females) consecutively treated by one orthodontist with maxillary first permanent molar extraction were studied, divided into three facial types, based on pre-treatment cephalometric values: hypodivergent (n = 18), normodivergent (n = 21) and hyperdivergent (n = 57). METHODS Occlusal outcome was scored on dental casts at T1 (pre-treatment), T2 (post-treatment) and T3 (mean follow-up 2.5 ± 0.9 years) using the weighted Peer Assessment Rating (PAR) Index. The paired sample t test and one-way ANOVA followed by Tukey's post hoc test were used for statistical analysis. RESULTS PAR was reduced by 95.7% and 89.9% at T2 and T3, respectively, compared with the start of treatment. The largest post-treatment changes were found for overjet and buccal occlusion. Linear regression analysis did not reveal a clear effect (R-Square 0.074) of age, sex, PAR score at T1, incremental PAR score T2-T1, overjet and overbite at T1, and facial type on the changes after treatment (incremental PAR score T3-T2). CONCLUSIONS The occlusal outcome achieved after Class II division 1 treatment with maxillary first permanent molar extractions was maintained to a large extent over a mean post-treatment follow-up of 2.5 years. Limited changes after treatment were found, for which no risk factors could be discerned
    corecore