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ABSTRACT In this article, we use a versatile homogenization approach to model the linear and nonlinear
optical response of two metasurfaces: a plasmonic metasurface consisting of graphene patches and a dielec-
tric photonic nanostructure consisting of silicon photonic crystal (PhC) cavities. The former metasurface is
resonant at wavelengths that are much larger than the graphene elements of the metasurface, whereas the
resonance wavelengths of the latter one are comparable to the size of its resonant components. By computing
and comparing the effective permittivities and nonlinear susceptibilities of the two metasurfaces, we infer
some general principles regarding the conditions under which homogenization methods of metallic and
dielectric metasurfaces are valid. In particular, we show that in the case of the graphene metasurface the
homogenization method describes very well both its linear and nonlinear optical properties, whereas in
the case of the silicon photonic nanostructure the homogenization method is only qualitatively accurate,
especially near the optical resonances.

INDEX TERMS Computational electromagnetics, electromagnetic metasurfaces, nanophotonics, nonlinear
plasmonics, terahertz generation.

I. INTRODUCTION
Metamaterials, whose emergence has opened up exciting
new opportunities to create novel media with pre-designed
physical properties, have been proving to have a significant
impact on the development of new approaches and devices
for controlling light interaction with matter and achieving
key functionalities, including light focusing [1]–[3], perfect
lensing [4], [5], perfect absorption [6]–[10], electromag-
netic cloaking [11]–[13], imaging with sub-diffraction reso-
lution [14]–[18], and optical sensing [19]–[22]. One of the
most important functionalities provided by metamaterials is
the enhancement of the local optical field [23]–[30]. This
feature is particularly relevant to nonlinear optics since non-
linear optical interactions grow nonlinearly with the applied
field. Promising applications of metamaterials can be found
in a broad area of science and engineering, including optical
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filters, sensing and infrastructure monitoring, medical
devices, remote aerospace applications, and smart solar
power management.

As research in metamaterials advanced, it became clear
that the two-dimensional (2D) counterpart of metamaterials,
the so-called metasurfaces, would offer the fastest route to
functional devices and applications. This is so chiefly because
most nanofabrication techniques can conveniently be applied
to the planar configuration of metasurfaces. These ultrathin
and lightweight optical devices are generally made of sub-
wavelength dielectric or metallic elements arranged in one-
dimensional (1D) or 2D periodic arrays. Equally important
from a practical perspective, the single-layer characteristics
of photonic devices based on metasurfaces make them partic-
ularly amenable to system integration. Because of their small
thickness, light-matter interaction occurs in a reduced volume
and as such optical losses in metasurfaces are relatively small.
Importantly in nonlinear optics applications, this reduced
light propagation distance in metasurfaces means that
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phase-matching requirements can be relaxed, which greatly
reduces the design constraints of nonlinear optical devices
based on metasurfaces [31]–[36].

Metasurfaces can mainly be divided into two categories,
namely metallic (plasmonic) [37], [38] and dielectric meta-
surfaces [39], [40]. Plasmonic metasurfaces, which exploit
the resonant excitation of surface plasmons at specific fre-
quencies [41]–[43], can greatly enhance the local optical
field, but this phenomenon is usually accompanied at optical
frequencies by large dissipative losses. Dielectric metasur-
faces, on the other hand, experience much smaller optical
losses but only provide limited optical field enhancement.
Moreover, another difference between the two classes of
metasurfaces, which is directly related to themagnitude of the
optical losses, is that whereas the resonances in the plasmonic
metasurfaces are relatively broad, the resonances associated
to dielectric metasurfaces are particularly narrow. As a result,
dielectric metasurfaces are usually much more dispersive
than the plasmonic ones. One effective approach to study
metasurfaces is using homogenization methods [44]–[50],
which reduce the metasurface to a homogeneous material
with specific retrievable linear and nonlinear optical coeffi-
cients. These effective physical quantities are determined in
such a way that the metasurface and homogenous layer of
material have the same optical response.

In this article, we propose a homogenization method
and investigate its accuracy when applied to plasmonic and
dielectric metasurfaces. As plasmonic metasurface we con-
sider a graphene metasurface [51]–[54] consisting of a square
array of free-standing graphene cruciform patches, whereas
the dielectric metasurface is made of a rectangular array of
photonic crystal (PhC) cavities possessing high-Q optical
modes, embedded in a silicon PhC slab waveguide. The
rationale for our choice is that the two metasurfaces capture
the general characteristics of the twomain classes of metasur-
faces, i.e. plasmonic and dielectric metasurfaces. In particu-
lar, the cruciform graphene patches possess strong plasmon
resonances characterized by highly confined, enhanced
optical near-field. As optical nonlinearity, we consider
second-harmonic generation (SHG) by the nonlocal nonlin-
ear polarization, as symmetry considerations imply that the
SHG by the local nonlinear polarization is zero [55], [56].
Moreover, the silicon PhC cavities were designed so as to pos-
sess two high-Q optical cavity modes separated by the Raman
frequency of silicon, which ensures a strong effective Raman
nonlinearity of the silicon photonic nanostructure [57].

The ideas presented in this article are novel in several
important aspects. First, we propose a nonlinear homoge-
nization method that does not rely on restrictive, specific
assumptions (all that is needed are the relations between the
linear fields and nonlinear polarization) and thus is rather
general in nature. Second, by choosing two metasurfaces
with markedly different but representative physical proper-
ties, we investigated and derived several guiding principles
regarding the applicability and accuracy of our new nonlinear
homogenization method.

The remainder of the paper is organized as follows: In
the next section we present the geometrical configurations
and material parameters characterizing the two metasurfaces
considered in this work. Then, in Sec. III, we introduce the
linear and nonlinear homogenization method used to extract
the constitutive parameters of the metasurfaces, whereas in
Sec. IV we apply our homogenization approach to the two
metasurfaces and derive general principles regarding the
conditions in which the predictions of the homogenization
method are valid. In particular, we extract the linear and
nonlinear constitutive parameters of the metasurfaces and
then compare the optical response of the metasurfaces with
that of their homogenized counterparts. Finally, we conclude
our paper by summarizing the main findings of our study and
discussing some of their implications to future developments
pertaining to metamaterials research.

FIGURE 1. Schematic of homogenization of two metasurfaces.
(a) Geometry of a graphene metasurface consisting of a 2D array of
graphene crosses. The unit cell is homogenized into a uniform layer of
material characterized by effective parameters. (b) Geometry of a silicon
photonic nanostructure consisting of a rectangular array of silicon PhC
nanocavities in a hexagonal PhC slab waveguide made of silicon. The unit
cell is homogenized into a uniform layer of material with effective
parameters.

II. DESCRIPTION OF THE GRAPHENE AND SILICON
METASURFACES
In this section, we describe the geometrical configuration and
material parameters of the two metasurfaces investigated in
this work, namely the graphene cruciform metasurface illus-
trated in figure 1(a) and the silicon photonic nanostructure
shown in figure 1(b). In addition, we explain the rationale for
our choice of metasurfaces by presenting their main physical
properties.
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A. GEOMETRICAL CONFIGURATION OF THE GRAPHENE
AND SILICON METASURFACES
The graphene metasurface lies in the x-y plane and consists of
a square array of cruciform graphene patches. The symmetry
axes of the array coincide with the x- and y-axes and are
oriented along the arms of the crosses, as per figure 1(a).
The length and width of the arms of the crosses along the
two axes are Lx (Ly) and wx (wy), respectively, whereas the
corresponding periods of the metasurface are Px and Py.
In this, work, unless otherwise specified, Lx = Ly = 60 nm,
wx = wy = 30 nm, and Px = Py = 100 nm, meaning that the
crosses are symmetric. Graphene metasurfaces with similar
geometrical parameters have been recently investigated both
experimentally and theoretically (for a review of fabrication
and theory of optical structures made of graphene and other
2D materials see Ref. [58]).

The relative electric permittivity of graphene is given by
the relation:

εg = 1+
iσs
ε0ωhg

, (1)

where hg = 0.3 nm is the thickness of graphene, ω is
the frequency, and the graphene surface conductivity, σs,
is described by the Kubo’s formula [59]:

σs =
e2kBT τ

π h̄2(1− iωτ )

[
µc

kBT
+ 2 ln

(
e−

µc
kBT + 1

)]
+

ie2

4π h̄
ln

2|µc|τ/h̄− i(1− iωτ )
2|µc|τ/h̄+ i(1− iωτ )

. (2)

Here, µc, T , and τ are the chemical potential, temperature,
and relaxation time, respectively. In this study, unless oth-
erwise specified, we use µc = 0.6 eV, τ = 0.1 ps, and
T = 300K.

FIGURE 2. Wavelength dependence of the real and imaginary parts of the
graphene relative permittivity.

The wavelength dependence of the real and imaginary
parts of graphene permittivity, as described by Eq. (1) in
conjunction with Eq. (2), are depicted in figure 2. It can be
seen in this figure that Im(εg) > 0 and Re(εg) < 0, which
are characteristics shared by most noble metals.

The silicon photonic nanostructure, illustrated
in figure 1(b), consists of a rectangular array of PhC cav-
ities embedded in a PhC slab waveguide made of silicon
(nSi = 3.4) [57]. The PhC slab waveguide comprises a 2D

FIGURE 3. a) Transverse-magnetic band structure of the PhC and two
optical modes of the PhC cavity withe frequencies of ωp and ωS . The
dashed lines indicate light lines. b) Diagrammatic representation of the
stimulated Raman scattering. c) The field profiles of the optical modes at
the pump and Stokes frequencies.

hexagonal lattice of air holes in a silicon slab with the hole
radius r = 0.29a and slab thickness t = 0.6a, where a is the
lattice constant. Moreover, the optical nanocavities are the
so-called L5 PhC cavities, namely they are created by filling
in 5 consecutive holes oriented along the 0K symmetry axis
of the hexagonal lattice. The periods of the PhC metasurface,
defined as the center-to-center distance along the x- and
y-axes between adjacent PhC cavities, are dl = 17a and
dt = 6

√
3a, respectively. In order to increase the Q-factor

of the optical modes of this PhC nanocavity, we shifted
outwardly the end-holes of the cavity by 0.15a [60].
The PhC cavity is designed in such a way that it possesses

two optical modes whose frequencies are separated by the
Raman frequency of silicon, � = 2π × 15.6 THz [61].
This ensures a very strong nonlinear coupling between the
two optical modes, both because of the large optical field
enhancement inside the cavities and also due to favorable
spatial overlap between the two optical modes. Consequently,
one can achieve an efficient Raman interaction between the
two optical modes. This means that the PhC nanocavities
can be viewed as artificially engineered, strongly nonlinear
‘‘silicon meta-atoms’’, which when arranged in some spatial
pattern give rise to photonic metasurfaces with large Raman
nonlinearity. In particular, if one chooses the lattice constant
a = 333 nm, the resonance frequency of the pump and
Stokes modes are ωp = 1572.5 THz and ωS = 1474.6 THz,
respectively, and therefore the condition ωp − ωS = �

is fulfilled. Expressed in terms of normalized frequency
of 2πc/a, the frequencies of the two optical modes are
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ωp = 0.2778 and ωS = 0.2605. Also, the Q-factors of the
two modes are Qp = 1804 and QS = 1.12× 105.

FIGURE 4. a) Wavelength dependence of absorption, reflectance, and
transmittance of the graphene metasurface. b) The same as in a), but
determined for the silicon photonic nanostructure.

The linear optical response of graphene and silicon meta-
surfaces are presented in figures 4(a) and 4(b), respec-
tively. In all cases considered in this work, unless otherwise
specified, the incident wave was an x-polarized plane wave
normally incident onto the metasurface (an experimental set-
up for the measurement of transmittance, reflectance, and
absorption at normal or near-normal incidence can be found
in [62]). Due to the symmetry properties of the unit cell,
the optical response of the graphene metasurface does not
depend on the polarization of the incident wave, but such a
dependence does exist in the case of the silicon metasurface.
Figure 4 clearly shows that, in the case of the graphene
metasurface, absorption, A, reflectance, R, and transmittance,
T , have a series of spectral resonances occurring at common
wavelengths. These resonances are due to the generation
of localized surface plasmons in the graphene crosses, the
resonance wavelength of the fundamental plasmon being
λ = 5.88µm. It can also be seen that the excitation of
surface plasmons is accompanied by a large increase of the
optical absorption, which suggests that at the correspond-
ing resonance wavelengths the optical near-field is signifi-
cantly enhanced.Moreover, the spectra of the silicon photonic
nanostructure show two resonances at the frequencies of the
two cavity modes, the width of these resonances being much
smaller than that of plasmon resonances.

B. MOTIVATION FOR CHOICE OF UNIT CELLS
Our choice for the unit cells of the two metasurfaces was
guided by the following two ideas: First, the unit cells should
contain resonant elements that generate strong enhancement
of the optical near-field. This, in turn, would ensure a large

enhancement of the nonlinear optical response of themetasur-
faces. Second, the elements of the unit cells should be generic
enough, namely the structure of the elements in the unit cells
should not be too simple, which would restrict the validity
of our findings, but at the same time they should not have
a very complicated structure, which would perhaps limit the
generality of the conclusions of our study.

The two metasurfaces investigated in this article sat-
isfy these two criteria. Thus, the graphene crosses and our
specially engineered PhC cavity support localized surface
plasmons and a set of optical modes separated by silicon
Raman frequency, respectively, so that in both cases strong
enhancement of the optical nonlinearity can be achieved.
Moreover, the structure of the graphene patches is complex
enough to allow one to study additional phenomena, such as
polarization-dependent optical response, by simply altering
its geometrical parameters. In particular, we wanted to avoid
using simple geometries, such as circular or square graphene
patches, as one might have been led to believe that the con-
clusions of our work would be limited to these simple cases.
Furthermore, in order to increase the generality of our work,
we chose to use neither highly engineered PhC cavities, nor
simple designs of PhC cavities, which usually possess optical
modes with low Q-factors.

III. LINEAR AND NONLINEAR
HOMOGENIZATION METHOD
In this section, we present first the homogenization approach
used to describe the effective optical response of the meta-
surfaces investigated in this article and retrieve their effective
permittivities and nonlinear susceptibilities and then compare
the linear optical response of the original and homogenized
metasurfaces so as to clarify the circumstances in which our
homogenization approach is accurate.

A. THEORY OF THE EFFECTIVE PERMITTIVITY OF
METASURFACES
The general linear homogenization method presented here
amounts to establishing a relationship between the averaged
electric displacement field, D, and the electric field, E , and
is known as the field averaging method. It will be expanded
later on to the nonlinear case. As it is well known, the consti-
tutive relation of a linear anisotropic material is expressed as
Di =

∑
j εijEj, where εij is the permittivity tensor and the

subscripts i, j = x, y, z. The field-average method relies on
this relation, the effective permittivity of the medium being
defined via a similar relation between the electric field and
the electric displacement field:

E(ω) =
1
V

∫
V
E(r, ω)dr, (3)

D(ω) =
1
V

∫
V
D(r, ω)dr. (4)

This method is particularly suitable for describing metasur-
faces, because in this case the averaging domain can be nat-
urally defined as the unit cell of the metasurface. Therefore,
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in the equations above, V is the volume of the unit cell of the
metasurface.

According to the field averaging method, for an isotropic
medium whose permittivity tensor is diagonal, the effective
permittivity is evaluated as εi = Di/E i. This definition can be
extended to anisotropicmedia as follows: First, one defines an
auxiliary quantity, dij = εijEj, and express the displacement
field as Di =

∑
j dij, and then calculate the averaged value of

each component of the auxiliary quantity:

d ij(ω) =
1
V

∫
V
dij(r, ω)dr=

1
V

∫
V
εij(r, ω)Ej(r, ω)dr. (5)

If we assume that the averaged fields are related by a con-
stitutive relation similar to that corresponding the local fields,
namely Di =

∑
j εijE j, and by requiring that the average of

the field D(r, ω) of the metasurface and the field D(ω) in the
homogenized layer of material are termwise equal, the effec-
tive permittivity is determined by the following equation:

εij(ω) =
d ij(ω)

E j(ω)
=

∫
V
εij(r, ω)Ej(r, ω)dr∫
V
Ej(r, ω)dr

. (6)

This formula has been used to determine the effective
permittivity of both metasurfaces. Before moving on to the
calculation of the effective nonlinear susceptibilities of the
metasurfaces, we note that in the case of the graphene meta-
surface the volume integrals can be reduced to surface inte-
grals across the midsection of the graphene sheet because the
fields across the ultrathin graphene layer vary only slightly.

B. CALCULATION OF EFFECTIVE SECOND-ORDER
SUSCEPTIBILITY OF GRAPHENE METASURFACES
As we assume that the graphene crosses are free standing,
symmetry considerations imply that the dipole (local) nonlin-
ear polarization at the second harmonic (SH) exactly cancels.
Consequently, the lowest order SHG is due to the nonlocal
nonlinear polarization whose sources are magnetic dipoles
and electric quadrupoles oscillating at the SH frequency.
It should be noted that if the graphene patches lie onto a
substrate the inversion symmetry is broken and consequently
the generated SH is due to the dipole nonlinear polarization.
The homogenization of such graphene metasurfaces has been
recently studied [63].

This nonlinear polarization and the associated nonlinear
surface current in the case of graphene metasurfaces charac-
terized by nonlocal nonlinear polarization can be expressed
as [55]:

P(r, �) = ε0χ (2)
g (�;ω,ω)

...E(r, ω)∇E(r, ω), (7)

Js(r, �) = σ (2)
g (�;ω,ω)

...E(r, ω)∇E(r, ω), (8)

where χ (2)
g (�;ω,ω) and σ (2)

g (�;ω,ω) are the bulk nonlinear
second-order susceptibility and surface nonlinear second-
order optical conductivity, respectively, and are related by the

following formula:

χ (2)
g (�;ω) =

i
ε0�hg

σ (2)
g (�;ω). (9)

We note that instead of a bulk nonlinear susceptibility
one can use a surface one, defined as χ (2)

s,g = hgχ
(2)
g =

(i/ε0�)σ
(2)
g , but we decided to use bulk quantities so that

it is more convenient to compare these nonlinear optical
coefficients of graphene with those of other centrosymmetric
materials.

The surface nonlinear second-order optical susceptibility
of graphene has been recently derived in [64] and is given by
the following equation:

σ
(2)
g,ijkl(�;ω)=σ

(2)
g,�(ω)

(
δikδjl−

5
3
δijδkl−

1
3
δilδjk

)
, (10)

where the scalar part of the surface second-order conductivity
tensor is:

σ
(2)
g,�(ω) =

3e3µ2
cτ

3

8π h̄2(1− iωτ )3
. (11)

Componentwise, the nonlinear polarization can be evalu-
ated as:

Pi(r, �)=ε0
∑
jkl

χ
(2)
g,ijklEj(r, ω)∇kEl(r, ω)≡

∑
jkl

qijkl (12)

where we introduced a new nonlinear auxiliary quantity
defined as qijkl = ε0χ

(2)
g,ijklEj∇kEl . Moreover, the spatial

average of this quantity is:

qijkl(�) =
1
V

∫
V
ε0χ

(2)
ijkl(r)Ej(r, ω)∇kEl(r, ω)dr, (13)

where χ (2)
ijkl(r) = χ

(2)
g,ijkl if r corresponds to a point inside the

graphene crosses and χ (2)
ijkl(r) = 0 if r is in the air region.

If we express the nonlinear polarization in the homoge-
nized metasurface as:

Pi(�) = ε0
∑
jkl

χ
(2)
ijklE j(ω)∇kEl(ω), (14)

where χ (2)
ijkl is the effective nonlinear second-order suscepti-

bility of the homogenized metasurface, and impose the con-
dition that the spatial average of the nonlinear polarization
described by Eq. (12) is termwise equal to the polarization
in Eq. (14), we obtain the following formula for the effective
nonlinear susceptibility:

χ
(2)
ijkl(�;ω) =

qijkl
E j∇kEl

. (15)

In this formula and in Eq. (14), the quantity ∇iEj is defined
as:

∇iEj =
1
V

∫
V
∇iEj(r, ω)dr. (16)
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C. THEORY OF EFFECTIVE RAMAN SUSCEPTIBILITY OF
SILICON PHOTONIC NANOSTRUCTURES
The calculation of the effective Ramman susceptibility of the
silicon based photonic nanostructure described in Sec. 2 is
similar to that of the effective second-order susceptibility
presented in the preceding subsection, so that here we present
only the main steps. A more detailed derivation can be found
in [57].

We start our analysis with the nonlinear Raman polariza-
tion at the Stokes frequency, PR(r, ωS ), which can be written
as:

PR(r, ωS ) =
3
2
ε0χ

(3)
R (r)

...E(r, ωp)E∗(r, ωp)E(r, ωS ), (17)

where χ (3)
R (r) is the Raman susceptibility and E(r, ωp) and

E(r, ωS ) are the optical fields at the pump and Stokes fre-
quencies, respectively. For the sake of simplicity, we assume
that the symmetry axes of the array of PhC cavities coincide
both with the x- and y-axes and with the principal axes of
silicon. Under these circumstances, the nonzero components
of χ (3)

R are χ (3)
R,ijij = χ

(3)
R,jiji = χ

(3)
R,jiij = χ

(3)
R,ijji, with i, j = x, y, z

and i 6= j. The value at resonance of the only independent
component is χ (3)

R,1212 = −i11.2× 10−18m2 V−2 [65].
We then define the spatially averaged effective Raman

polarization:

PR(ωS ) =
1
V

∫
V
PR(r, ωS )dr, (18)

where the volume integration is taken over the unit cell of the
metasurface, together with the effective Raman polarization
in a homogenized slab of nonlinear optical medium with the
same thickness as that of the PhC slab:

Peff
R (ωS ) =

3
2
ε0χ

(3)
R

...E(ωp)E
∗
(ωp)E(ωS ). (19)

Here, χ (3)
R is the effective Raman susceptibility of the homog-

enized metasurface.
As in the case of the graphene metasurface, we cannot sim-

ply impose the condition that the components of the nonlinear
polarizations in Eq. (18) and Eq. (19) are equal because in
the general case the effective Raman susceptibility tensor,
χ
(3)
R , has 81 independent components, so that the correspond-

ing system of equations is overdetermined. Consequently,
we impose the condition that the r.h.s. of equations Eq. (18)
and Eq. (19) are termwise identical. Using this constraint,
it can be seen that the components of χ (3)

R are determined by
the following formula:

χ
(3)
R,ijkl =

1
V

∫
V
χ
(3)
R,ijkl(r)Ej(r, ωp)E

∗
k (r, ωp)El(r, ωS )dr

E j(ωp)E
∗

k (ωp)E l(ωS )
.

(20)

Note that the components of χ (3)
R and χ (3)

R cancel for the same
set of indices i, j, k , and l.
Before we move on to the description of our computational

approach, we want to make it clear that our homogenization

method does not simply rely on the quasistatic approximation
because the linear fields are calculated rigorously. This means
that retardation and multiple scattering effects present in the
photonic crystal regime are rigorously taken into account.
The main approximation we make is that the nonlocal effects
on the effective permittivity of the structure are neglected,
which is equivalent to neglecting the dependence of the effec-
tive permittivity and effective nonlinear susceptibility on the
wave vector, k. In other words, we determine ε(ω,k) |k=0
and χ (ω,k) |k=0.

FIGURE 5. a) Absorption spectra of the graphene metasurface calculated
using a computational mesh with at least 20 cells per wavelength (solid
lines) and at least 10 cells per wavelength (circles). b) The same as in a),
but determined for the silicon photonic nanostructure.

D. COMPUTATIONAL APPROACH
In our calculation of the transmittance, reflectance, and
absorption spectra of the graphene and silicon photonic
nanostructures we used a finite-element frequency-domain
solver, as implemented in the commercial software CST
STUDIO [66]. Along the x- and y-axes we used periodic
boundary conditions, whereas along the z-axis we used open-
add-space boundary conditions. Moreover, in all our calcula-
tions we used 20 cells per wavelength. However, we observed
that inmost cases converged results can be obtained as long as
there are at least 10 cells per wavelength. In order to illustrate
this finding, we present in figure 5 the absorption spectra of
the graphene and silicon metasurfaces, corresponding to two
computational meshes, namely a coarse mesh containing at
least 10 cells per unit length and a finer one containing at
least 20 cells per wavelength. For the nonlinear simulation,
we used a hybrid numerical method, combing the finite-
difference time-domain (FDTD) method and the nonlinear

175758 VOLUME 8, 2020



Q. Ren et al.: Comparison Between the Linear and Nonlinear Homogenization

generalized source (GS) method, as detailed in our previous
work [67].

The photonic band structure of the PhC slab and the
corresponding cavity modes were computed with RSoft’s
BandSOLVE [68], with the cavity modes lying in the
transverse-magnetic bandgap of the PhC slab waveguide (see
figure 3). In order to calculate the cavity modes, we used
a supercell with size 7a × 7a × 4a and 224 × 224 × 128
plane-waves, that is, 32 plane-waves per lattice constant, a.
Moreover, theQ-factors of the optical cavitymodes have been
calculated using the finite-difference time-domain method as
implemented in MEEP [69], a freely available software.

In our numerical simulations we used a workstation with
a 10-core Intel R© Xeon R© processor E5-2660 v3 @ 2.60GHz
and 25MB cache memory. Generic simulation times for the
silicon photonic nanostructure and its homogenized counter-
part were 270min and 10min, respectively, whereas in the
case of the graphene metasurface generic simulation times
for the metasurface and its homogenized counterpart were
120min and 15min, respectively. These results show a reduc-
tion of about an order of magnitude of the computational time
in the case of the homogenized structure as compared to that
corresponding to the actual metasurface.

IV. RESULTS AND DISCUSSIONS
In this section, we study the circumstances in which our
method produces accurate results and use it to understand the
main differences between the physical properties of graphene
and silicon PhC metasurfaces.

A. EFFECTIVE PERMITTIVITIES OF THE GRAPHENE AND
SILICON PHOTONIC CRYSTAL METASURFACES
Based on our theoretical analysis, the effective permittivity
of the two metasurfaces investigated in this work can be
calculated using Eq. (6). The results of our calculations,
corresponding to the graphene and silicon PhC metasurfaces,
are presented in figure 6(a) and figure 6(b), respectively.
These figures show some similarities between the two spectra
but also significant differences. Thus, the effective permit-
tivity of graphene metasurface displays a series of spectral
resonances of Lorentzian nature, which occur at the plasmon
resonance wavelengths of the graphene crosses. This means
that the graphene crosses behave as meta-atoms that possess
a series of resonant states, the overall optical response of the
metasurface being primarily determined by these resonances.
The main reason for this behavior can be traced to the size
of the graphene crosses relative to the resonance wavelengths
of the plasmons of the graphene crosses. Specifically, since
the size of the crosses is much smaller than the plasmon
wavelengths, the overall optical response of the graphene
metasurface can be viewed as a superposition of the response
of weakly interacting Lorentz-type oscillators. It should be
noted that since the resonance wavelength of graphene plas-
mons is usuallymuch larger than the size of graphene patches,
one could not have a situation in which the conditions that the
operating wavelength is comparable to the size of graphene

patches and the optical near-field is strongly enhanced via
plasmon excitation are simultaneously satisfied.

FIGURE 6. a) Spectra of the real and imaginary parts of the effective
permittivity of the graphene metasurface. b) The same as in a), but
calculated for the silicon photonic nanostructure in x-polarized
excitation.

The spectrum of the effective permittivity of the silicon
photonic nanostructure, on the other hand, presents a series of
complex features, which are the result of several phenomena.
Thus, the two main resonances of the effective permittivity
are due the excitation of the two optical modes of the PhC
cavity. The spectral separation between the frequencies of the
two cavity modes is relatively small and this leads to inter-
ference features in the spectrum of the effective permittivity.
The other, weaker spectral peaks are presumably due to leaky
modes of the PhC slab. Note also that whereas the effective
permittivity of the graphene metasurface is isotropic, that of
the silicon photonic nanostructure is anisotropic.

B. VALIDATION OF THE HOMOGENIZATION APPROACH
In order to validate the conclusions drawn in the preced-
ing subsection and to investigate the situations in which
our homogenization method is accurate, we calculated the
absorption, A, reflectance, R, and transmittance, T of both
metasurfaces and their homogenized counterparts. The main
results of these calculations are summarized in figure 7 and
they reveal several important ideas. Thus, it can be seen in this
figure that in the case of the graphene metasurface the reso-
nances of the transmittance occur at the same wavelengths
as the resonances of the effective permittivity, whereas for
the silicon photonic nanostructure the two sets of resonances
differ to some extent. In order to explain these results, one
should note that generally the resonances of the transmittance
of a planar optical system correspond to excitation of bound
modes of the optical system. In the cases investigated here,
the bound modes are localized surface plasmons of graphene
crosses for the graphene metasurface and optical modes of
the PhC cavities and leaky modes of the PhC slab. Moreover,
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FIGURE 7. a) Wavelength dependence of absorption, reflectance, and
transmittance of the graphene metasurface (solid lines) and its
homogenized counterpart (marked with circles). b) The same as in a), but
determined for the silicon photonic nanostructure. The spectra
corresponding to the homogenized metasurface are depicted with dotted
lines.

the excitation of these resonances induces a resonant response
of the medium, via the polarization of the medium, which
in turn leads to resonances in the spectrum of the effective
permittivity of the homogenized metasurfaces.

Figure 7(b) also shows that whereas the linear optical
responses of the graphene metasurface and its homogenized
counterpart are almost identical, in the case of the silicon
photonic nanostructure they markedly differ from each other.
The main reason for this dichotomy is that the graphene
crosses are much smaller than the operating wavelength,
which makes them respond to the incident optical field as if
they were point-like resonators. By contrast, the size of the
PhC cavities (more precisely, the size of the optical modes) is
larger but comparable to the resonance wavelength of the cav-
ity modes, which renders our homogenization method to be
only qualitatively valid. It should also be noted, however, that
although the homogenization approach for silicon photonic
nanostructures does not provide accurate quantitative values
for the effective permittivity, it can still provide us valuable
qualitative insights into the governing physics.

These ideas are further illustrated by the dependence of
the linear optical response of the graphene metasurface on
the angle of incidence, θ , of the incoming plane wave, which
is presented in figure 8. Thus, it can be observed that the
spectral resonances of the graphene metasurface, calculated
for θ = 0◦, 30◦ and 60◦, only slightly varies with θ , whereas
the values ofA,R, and T at the resonance wavelengths depend
more pronouncedly on θ . These findings are explained by
the fact that the plasmon resonances depend chiefly on the

FIGURE 8. Spectra of absorption, reflectance, and transmittance,
calculated for different values of the angle of incidence: a) θ = 0,
b) θ = 30◦, and c) θ = 60◦.

shape of the graphene nano-patches, and thus are independent
on θ , whereas the particular values of A, R, and T depend on
the coupling between the incident field and graphene crosses,
more specifically on the spatial overlap between the incident
wave and the optical field of the graphene plasmons, which
is obviously θ -dependent.

C. EFFECTIVE SECOND-HARMONIC SUSCEPTIBILITY OF
GRAPHENE METASURFACES
Let us now consider the nonlinear optical properties of the
two optical structures and start with the graphene meta-
surface. The excitation of graphene localized plasmons at
the fundamental frequency (FF) induces a strong optical
near-field and consequently enhanced nonlinear polarization,
which is the source of the generated SH. The resonance
wavelength of these plasmons, and consequently the wave-
lengths at which enhanced SHG is observed, depends on the
graphene permittivity, as per Eq. (1) and Eq. (2), and implic-
itly on the chemical potential µc and relaxation time τ of
graphene. In particular, as it can be seen in figure 9(a), when
the chemical potential increases from 0.2 eV to 0.6 eV, the
plasmon wavelength decreases from 11µm to 6µm, whereas
the corresponding peak absorption increases from 0.25 to
0.48. This dependence of the resonance wavelength on the
chemical potential can be explained as follows: when µc
increases, the real part of the index of refraction of graphene
decreases and consequently the resonance wavelength of the
plasmons decreases. Note that in practice it is relatively
easy to bias graphene metasurfaces, even when the graphene
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FIGURE 9. (a) Spectrum of optical absorption at fundamental frequency
calculated for different values of chemical potential, µc . (b) Spectrum of
optical absorption at fundamental frequency calculated for different
values of scattering rate τ . (c) Spectra of the normalized optical
absorption at FF (blue curve) and SH (red curve) with rigorous numerical
method rather than homogenization.

regions form a noncontiguous area, e.g. by using an ion-gel
gating technique [70], [71].

The influence of graphene relaxation time on the absorp-
tion of the graphene metasurface is illustrated in figure 9(b).
Thus, it can be inferred from this figure that the relaxation
time τ has essentially no effect on the resonance wavelength
of the graphene plasmons because the graphene permittivity
depends only weakly on τ . Moreover, as expected, the spec-
tral width of the resonance becomes narrower as the relax-
ation time increases, which is a consequence of the fact that
when the relaxation time increases, graphene losses decrease.

The enhancement of the linear and nonlinear optical
response of the graphene metasurface can be clearly seen
in figure 9(c), where we present the normalized absorption
spectra at the FF and SH. In particular, it can be observed
in this figure that the occurrence of a resonance at the FF is
accompanied by a resonance at half of its wavelength in the
SH spectrum. For example, the plasmon resonance at the FF
of λFF = 5.878µm has a correspondent in the SH spectrum
at λSH = λFF/2 = 2.939 µm.
As can be easily inferred from Eq. (9) and Eq. (10),

the dominant components (in absolute value) of the second-
order susceptibility of graphene are χ (2)

g,xxyy = χ
(2)
g,yyxx . The

value of this component, determined for a FF wavelength
λ = 1µm, is χ (2)

g,xxyy = (−8.37+ 0.133i)× 10−19m2 V−1.
Moreover, as a consequence of our approach to the

FIGURE 10. (a) Enhancement of effective SH susceptibility of the
graphene metasurface, determined for different values of chemical
potential, µc . (b) Enhancement of effective SH susceptibility of the
graphene metasurface, determined for different values of scattering
rate, τ . (c) Enhancement of effective SH susceptibility of the graphene
metasurface, determined for different values of the angle of incidence, θ .

calculation of the effective second-order susceptibility, it is
equal to zero for the same set of indices for which the
graphene second-order susceptibility is equal to zero. There-
fore, in order to quantify the enhancement of the nonlinear
optical response of the graphene metasurface, we computed
the enhancement factor, ηSH = |χ

(2)
xxyy/χ

(2)
g,xxyy|, for several

values of the chemical potential, µc = 0.2 eV, 0.4 eV and
0.6 eV [see figures 10(a)] and angle of incidence, θ = 0◦,
30◦ and 60◦, as per figure 10(c).
The most important conclusion of this analysis is that,

at the wavelength of the fundamental plasmon, the effec-
tive second-order susceptibility of the homogenized graphene
metasurface is enhanced by almost 200×. More precisely,
the maximum achievable enhancement factor is ηSH = 175,
which means that the maximum value of the effective second-
order susceptibility of the homogenized graphene metasur-
face is |χ (2)

xxyy| = 1.46× 10−16m2V−1. For comparison,
the bulk second-order susceptibility of two centrosymmetric
materials widely used in nonlinear optics, gold and silicon,
are γ = 7.13× 10−21m2 V−1 (gold at λ = 810 nm) [72]
and γ = 1.3× 10−19m2 V−1 (silicon at λ = 800 nm) [73].
Moreover, it can be seen in figure 10(a) that the enhancement
factor ηSH increases with the chemical potential µc, namely
it increases by almost 4× when ηSH increases from 0.2 eV
to 0.6 eV. In addition, it can be inferred from figure 10(c)
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that the enhancement factor is smaller for higher-order plas-
mons, as in this case the plasmon-induced field enhance-
ment decreases. Another feature revealed by figure 10(c) is
that the enhancement factor decreases as the angle of inci-
dence increases, a finding explained by the fact that when
θ increases the spatial overlap between the incident wave
and the plasmon mode becomes less favorable and thus the
enhancement of the local optical field decreases.

D. EFFECTIVE RAMAN SUSCEPTIBILITY OF THE SILICON
PHOTONIC CRYSTAL METASURFACE
Due to the symmetry properties of the silicon photonic nanos-
tructure and the orientation of the cavity array with respect to
the principal axes of silicon, the only non-zero component
of the effective Raman susceptibility of the photonic nanos-
tructure is χ (3)

R,1212 ≡ χ
(3)
R . Therefore, similarly to the case of

the graphene metasurface, we define the enhancement factor
ηR = |χ

(3)
R /χ

(3)
R |, where χ

(3)
R ≡ χ

(3)
R,1212 is the dominant

component of the Raman susceptibility of silicon. The param-
eter ηR quantifies the enhancement of the Raman nonlinearity
of the silicon photonic nanostructure. Moreover, in order to
investigate the dependence of the enhancement factor on the
angle of incidence, these calculations were performed for
θ = 0◦, 30◦ and 60◦.
Following the procedure we just described, we found out

that for the values of the incidence angle of 0◦, 30◦ and
60◦, the enhancement factor was 2.29× 104, 3.19× 103

and 1.99× 103, respectively. Thus, it can be seen that a
giant enhancement of the effective Raman susceptibility of
the silicon photonic nanostructure of more than 4 orders of
magnitude can be achieved at normal incidence. In order to
understand the main reason for this remarkable nonlinearity
enhancement, one should note that due to the large Q-factor
of the pump and Stokes cavity modes the field is significantly
enhanced as compared to the amplitude of the incident wave,
which in conjunction with the fact that the Raman intensity is
proportional to the local field to the power of 6, leads to the
extremely large resonant enhancement of the Raman response
of the silicon photonic nanostructure. Moreover, the cavity
field enhancement decreases when the angle of incidence
increases, due to a weaker coupling between the incoming
wave and the cavity modes, which results in reduced nonlin-
earity enhancement at larger θ .

As a final remark, it should be noted that the specific design
of our metasurface ensures a particularly efficient Raman
amplification. To bemore specific, let us compare the spectral
width of Raman interaction in silicon, 1νR = 105GHz [74],
with the spectral width of the cavity mode at the Stokes
frequency, 1νS = ωS/(2πQS ) = 2.1GHz. Thus, since
1νS � 1νR, an efficient Raman interaction can be achieved.

V. CONCLUSION
In summary, two generic metasurfaces, a graphene meta-
surface based on graphene cruciform patches and a sili-
con photonic nanostructure with photonic crystal cavities as
building blocks, are studied using a versatile and powerful

homogenization method. In particular, in order to quantify
the linear and nonlinear optical response of the two meta-
surfaces, we computed their effective permittivities and non-
linear susceptibilities. Our calculations revealed that, in both
cases, the nonlinear optical response of the metasurfaces was
enhanced by several orders of magnitude at the resonances of
the metasurface building blocks. Moreover, by comparing the
optical response of the metasurfaces and their homogenized
counterparts, we showed that the homogenization approach
is more suitable for graphene-based metasurfaces, because in
this case the size of the resonant graphene nanostructures is
much smaller than the operating wavelength. Even though the
homogenization approach for silicon photonic nanostructures
appeared to be less accurate, it could still provide valuable
qualitative insights into their nonlinear optical response.
It should be noted that our homogenization approach is

rather general, in that it can be readily extended to metasur-
faces of different configurations or made of optical media
with various dispersive and nonlinear optical properties.
Moreover, the ideas presented in this article have broad
applicability, as they can be easily extended to other nonlinear
optical interactions of practical interest, including third-
harmonic generation, four-wave mixing, and sum- and dif-
ference frequency generation.
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