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Abstract

Development of cardiac dysfunction is associated with increased morbidity and mortality in patients with sepsis. Increasing
evidence shows that gender determines the degree of inflammatory response of the host and that females tolerate sepsis
better than males. It is unknown whether gender affects the cardiac dysfunction in animals or patients with sepsis. To
investigate this, male or female C57BL/6 mice were subjected to either lipopolysaccharide (LPS)/peptidoglycan (PepG) co-
administration or cecal ligation and puncture (CLP). At 18 hours after LPS/PepG injection or 24 hours after CLP, cardiac
function was evaluated by echocardiography. The septic insult caused a significant cardiac dysfunction in both genders.
However, the cardiac dysfunction was significantly less pronounced in females in comparison with males subjected to LPS
(3 mg/kg)/PepG (0.1 mg/kg) or CLP. Compared with males injected with LPS (3 mg/kg)/PepG (0.1 mg/kg), western blotting
analysis of the myocardium from females injected with LPS/PepG revealed i) profound increases in phosphorylation of Akt
and eNOS; ii) significant decreases in phosphorylation of IkBa, nuclear translocation of the NF-kB subunit p65, decreased
expression of iNOS and decreased synthesis of TNF-a and IL-6 in the heart. However, the gender dimorphism of the cardiac
dysfunction secondary to LPS/PepG was not observed when higher doses of LPS (9 mg/kg)/PepG (1 mg/kg) were used. In
conclusion, the cardiac dysfunction caused by sepsis was less pronounced in female than in male mice. The protection of
female hearts against the dysfunction associated with sepsis is (at least in part) attributable to cardiac activation of the Akt/
eNOS survival pathway, decreased activation of NF-kB, and decreased expression of iNOS, TNF-a and IL-6. It should be noted
that the observed gender dimorphism of the cardiac dysfunction in sepsis was not seen when a very severe stimulus (high
dose of LPS/PepG co-administration) was used to cause cardiac dysfunction.
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Introduction

Sepsis is one of the most common causes of morbidity and

mortality among admissions to the intensive care unit [1,2]. Sepsis

is a systemic dysregulated hyperinflammatory and/or anti-

inflammatory response to infectious stimuli, such as bacteria,

viruses and fungi, which, when excessive, may progress to organ

failure and death [3]. Development of myocardial dysfunction is

associated with increased morbidity and mortality of sepsis. More

than 40% cases of sepsis have cardiovascular impairment [4] and

the presence of myocardial dysfunction can increase the mortality

rate of affected patients to 70% [5].

There is now good evidence that gender is a key determinant in

the degree of the host inflammatory response and even of outcome

in patients with sepsis. In a number of clinical and epidemiological

studies, a significantly increased survival rate was reported in

female patients when compared with male patients with sepsis [6–

9]. This may be associated with lower pro-inflammatory and

higher anti-inflammatory cytokine levels in female patients [9].

Moreover, healthy female volunteers challenged with either

lipopolysaccharide (LPS) or lipoteichoic acid (LTA) showed less

pro-inflammatory response than males as demonstrated by lower

levels of tumor necrosis factor (TNF)-a, interleukin (IL)-1b, IL-6
and IL-8 in blood [10]. In addition, severely injured male trauma-

patients had a higher incidence of sepsis, multiple organ

dysfunction syndrome and greater elevations in plasma procalci-

tonin and IL-6 compared with the equivalent group of females

[11]. Further basic research studies also confirmed these clinical
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data on gender dimorphism following sepsis. These experimental

studies suggested that females had immunologic advantage and

showed a significantly increased survival rate compared with males

following induction of polymicrobial sepsis by cecal ligation and

puncture (CLP) [12]. In addition, estrogen treatment attenuated

the liver dysfunction and intestine injury caused by sepsis in rats

with decreased serum aspartate aminotransferase (AST), alanine

aminotransferase (ALT) levels and ameliorated oxidative organ

damage [13], while testosterone receptor blockade with flutamide

following trauma-hemorrhage restored immune depression and

significantly decreased the mortality after a subsequent septic

challenge in male animals [14].

However, little is known about the impact of gender dimor-

phism on cardiac dysfunction caused by sepsis. Moreover, the

mechanisms underlying the gender difference in susceptibility of

the heart to a septic challenge are not understood. The present

study was designed to determine whether the severity of

myocardial dysfunction caused by either co-administration of

LPS/peptidoglycan (PepG) or polymicrobial sepsis induced by

CLP differs in male and female mice. Having found that the

cardiac dysfunction associated with sepsis was less pronounced in

female than in male mice, we have then investigated the potential

signalling pathways that may have contributed to the observed

differences.

Materials and Methods

Animals
The animal protocols followed in this study were approved by

the Animal Welfare Ethics Review Board (AWERB) of Queen

Mary University of London in accordance with the derivatives of

both the Home Office guidance on the Operation of Animals

(Scientific Procedures Act 1986) published by Her Majesty’s

Stationery Office and the Guide for the Care and Use of

Laboratory Animals of the National Research Council. All surgery

was performed under ketamine/xylazine anesthesia and echocar-

diography was performed under inhalation anesthesia of isoflur-

ane, buprenorphine was administered before surgery as well as 6

hours and 18 hours after surgery to reduce postoperative pain, and

all efforts were made to minimize suffering of the animals. This

study was carried out on ten week-old male (n = 29) and age-

matched female (n = 22) C57BL/6 mice, weighing 20–30 g, and

eight month-old male (n = 12) and age-matched female (n = 12)

C57BL/6 mice (Charles River Laboratories UK Ltd., Kent, UK),

weighing 35–50 g. The animals were allowed to acclimatize to

laboratory conditions for a period of at least one week before any

experimental procedures were initiated. They were housed in

individually ventilated cages lined with an absorbent bedding

material with no more than 6 mice per cage. The room

temperature and humidity was maintained at 19uC–23uC and

55%, respectively. All animals had free access to a standard diet

and water ad libitum. The feeding boxes were cleaned and

disinfected every 3 days, and the water was changed on a daily

basis to prevent infectious diseases. Animals were inspected for

signs of illness and/or unusual behaviour by research staff at least

once per day. All studies involving animals are reported in

accordance with the ARRIVE guidelines for reporting experi-

ments involving animals [15,16].

Model of LPS/PepG-induced Cardiac Dysfunction
Ten week-old male and female C57BL/6 mice received

intraperitoneal administration of LPS/PepG (LPS; 3 mg/kg and

PepG; 0.1 mg/kg or LPS; 9 mg/kg and PepG; 1 mg/kg in PBS;

5 ml/kg i.p.). Sham-treated mice were not subjected to LPS/

PepG, but were otherwise treated the same way. Eighteen hours

after LPS/PepG administration, cardiac function was assessed by

echocardiography in vivo. Mice were then deeply anesthetized i.p.

with ketamine/xylazine, and were killed by removing the hearts.

Heart samples were stored at 280uC for further analyses. Mice

were randomly allocated into eight different groups. The following

groups were studied for the low dose LPS/PepG co-administration

[LPS (3 mg/kg)/PepG (0.1 mg/kg)] study: (i) Male+vehicle
(n = 6); (ii) Female+vehicle (n = 4); (iii) Male+LPS/PepG (n= 7);

(iv) Female+LPS/PepG (n= 8). The following groups were studied

for the high dose LPS/PepG co-administration [LPS (9 mg/kg)/

PepG (1 mg/kg)] study: (i) Male+vehicle (n = 5); (ii) Female+
vehicle (n = 4); (iii) Male+LPS/PepG (n= 11); (iv) Female+LPS/
PepG (n= 6).

Model of Polymicrobial Sepsis caused by Cecal Ligation
and Puncture
Eight month-old male and female C57BL/6 mice were

subjected to CLP. Sham-operated mice were not subjected to

ligation or perforation of cecum but were otherwise treated the

same way. We followed the original CLP protocol introduced by

Wichterman and co-workers [17] with slight modifications

including analgesia, antibiotic therapy and fluid resuscitation as

described previously [18,19]. Based on previous evidence and

preliminary data, an 18-G needle was used with the double

puncture technique in order to generate reproducible cardiac

dysfunction during the early phase of sepsis (24 hours). Briefly,

mice were anesthetized i.p. with ketamine (100 mg/kg) and

xylazine (10 mg/kg) prepared in the same solution by using

1.5 ml/kg. Buprenorphine (0.05 mg/kg i.p.) was injected addi-

tionally to provide adequate analgesia. The rectal temperature of

the animals was maintained at 37uC with a homeothermic blanket.

The abdomen was opened via a 1.5 cm midline incision, and the

cecum exposed. The cecum was ligated just below the ileocecal

valve and punctured at both opposite ends. After a small amount

of fecal matter was extruded from both ends, the cecum was

placed back in its anatomical position and the abdomen was

sutured. Ringer’s solution was given s.c. for resuscitation directly

after surgery (1 ml/mouse) and 6 hours and 18 hours after surgery

(0.5 ml/mouse). Antibiotic (Imipenem/Cilastin; 20 mg/kg s.c.)

and analgesia (buprenorphine; 0.05 mg/kg i.p.) was administered

6 hours and 18 hours after surgery. At 24 hours after CLP, cardiac

function was assessed by echocardiography in vivo. Mice were then

deeply anesthetized i.p. with ketamine/xylazine, and were killed

by removing the hearts. Heart samples were stored at 280uC for

further analyses. Mice were randomly allocated into four different

groups: (i) Male+sham-operation (n= 4); (ii) Female+sham-opera-

tion (n= 4); (iii) Male+CLP (n= 8); (iv) Female+CLP (n= 8).

Assessment of Cardiac Function in vivo
Cardiac function was assessed in mice by echocardiography

in vivo as reported previously [18,19]. At 18 hours after LPS/PepG

co-administration or 24 hours after CLP, anesthesia was induced

with 3% isoflurane and maintained at 0.5 to 0.7% for the duration

of the procedure. Before assessment of cardiac function, mice were

allowed to stabilize for at least 10 minutes. During echocardiog-

raphy the heart rate was obtained from ECG tracing and the

temperature was monitored with a rectal thermometer. Two-

dimensional and M-mode echocardiography images were record-

ed using a Vevo-770 imaging system (VisualSonics, Toronto,

Ontario, Canada). Percentage fractional area change (FAC) was

assessed from a two-dimensional trace and percentage EF and

fractional shortening (FS) were calculated from the M-mode
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measurements in the parasternal short axis view at the level of the

papillary muscles.

Western Blot Analysis
Semi-quantitative western blot analyses were carried out in

mouse heart tissues as described previously [20]. We assessed the

degree of phosphorylation of Akt on Ser473, endothelial nitric

oxide synthase (eNOS) on Ser1177, inhibitor of kB (IkB) a on

Ser32/36, as well as the nuclear translocation of the p65 subunit of

nuclear factor (NF)-kB (nucleus/cytosol ratio) and inducible nitric

oxide synthase (iNOS) expression. Briefly, mouse heart samples

were homogenized in 10% homogenization buffer and centrifuged

at 4000 RPM for 5 minutes at 4uC. Supernatants were removed

and centrifuged at 14 000 RPM at 4uC for 40 minutes to obtain

the cytosolic fraction. The pelleted nuclei were re-suspended in

extraction buffer and centrifuged at 14 000 RPM for 20 minutes

at 4uC. The resulting supernatants containing nuclear proteins

were carefully removed, and protein content was determined on

both nuclear and cytosolic extracts using a bicinchoninic acid

(BCA) protein assay following the manufacturer’s directions

(Therma Fisher Scientific, Rockford, IL). Proteins were separated

by 8% sodium dodecyl sulphatepolyacrylamide gel electrophoresis

(SDS-PAGE) and transferred to a polyvinyldenedifluoride (PVDF)

membrane, which was then incubated with a primary antibody

(rabbit anti-total Akt, dilution 1:1000; mouse anti-pAkt Ser473,

dilution 1:1000; rabbit anti-total eNOS, dilution 1:200; goat anti-

peNOS Ser1177, dilution 1:200; mouse anti-total IkBa, dilution
1:1000; mouse anti-IkBa pSer32/36, dilution 1:1000; rabbit anti-

NF-kB p65, dilution 1:1000; rabbit anti-total iNOS, dilution

1:200). Blots were then incubated with a secondary antibody

conjugated with horseradish peroxidase (dilution 1:10000) for 30

minutes at room temperature and developed with the ECL

detection system. The immunoreactive bands were visualized by

autoradiography. Densitometric analysis of the bands was

performed using the Gel Pro Analyzer 4.5, 2000 software (Media

Cybernetics, Silver Spring, MD, USA). Each group was then

adjusted against corresponding sham data to establish relative

protein expression when compared with sham animals.

Quantitative Determination of Tissue TNF-a and IL-6 by
ELISA
The expressions of TNF-a and IL-6 in mouse heart samples

were determined using mouse TNF-a and IL-6 immunoassay kits

(R&D Systems, Minneapolis, MN), respectively, and have been

normalized to the protein content.

Statistics
All values described in the text and figures are presented as

mean 6 standard error of the mean (SEM) of n observations,

where n represents the number of animals studied. Statistical

analysis was performed using GraphPad Prism 6.0 (GraphPad

Software, San Diego, California, USA). Two-way ANOVA

followed by Sidak’s multiple comparisons test was used to compare

intergroup differences. Comparing results were considered statis-

tically significant when P,0.05.

Materials
Unless otherwise stated, all compounds in this study were

purchased from Sigma-Aldrich Company Ltd (Poole, Dorset,

UK). All solutions were prepared using non-pyrogenic saline

[0.9% (w/v) NaCl; Baxter Healthcare Ltd, Thetford, Norfolk,

UK]. Antibodies for immunoblot analysis were purchased from

Santa Cruz Biotechnology, Inc. (Heidelberg, Germany).

Results

Gender Dimorphism of Cardiac Dysfunction in Response
to LPS (3 mg/kg)/PepG (0.1 mg/kg) Co-administration
To determine the gender difference of cardiac dysfunction

caused by LPS/PepG, left ventricular function was assessed using

echocardiography at 18 hours after intraperitoneal injection of

LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS (5 mg/kg). Mice

injected with LPS/PepG had a lower body temperature and a

lower heart rate in comparison to sham-treated mice (male sham/

female sham versus male+LPS/PepG/female+LPS/PepG; P,

0.05; Table 1). In sham-treated mice, there was no difference of

EF, FS or FAC between male and female mice (P.0.05;

Figure 1A–D). When compared to sham-treated mice, LPS/PepG

caused a significant reduction in EF (P,0.05; Figure 1A–B), FS

(P,0.05; Figure 1A, 1C) and FAC (P,0.05; Figure 1A, 1D) in

both male and female mice, indicating the development of cardiac

dysfunction in vivo. However, female mice subjected to LPS/PepG

exhibited significantly higher EF, FS and FAC in comparison with

male mice (P,0.05; Figure 1A–D), indicating the cardiac

dysfunction caused by LPS/PepG was less pronounced in female

than in male animals.

Gender Dimorphism of Cardiac Dysfunction in Response
to CLP-induced Polymicrobial Sepsis
The murine model of CLP with fluid resuscitation and

antibiotic treatment offers a clinically relevant model of abdominal

polymicrobial human sepsis. Cardiac dysfunction induced by

polymicrobial sepsis caused by CLP was only observed in 8

month-old male mice [19]. We sought to confirm the above

observed gender difference of cardiac dysfunction in the CLP

animal model in 8 month-old male and female mice. Left

ventricular function was assessed using echocardiography at 24

hours after CLP or sham surgery. Mice that underwent CLP had a

lower body temperature and a lower heart rate in comparison to

sham-operated mice (male sham/female sham versus male+CLP/
female+CLP; P,0.05; Table 1). In sham-operated mice, there was

no difference of EF, FS or FAC between male and female mice

(P.0.05; Figure 1E–H). When compared to sham-treated mice,

polymicrobial sepsis induced by CLP caused a significant

reduction in EF (P,0.05; Figure 1E–F), FS (P,0.05; Figure 1E,

1G) and FAC (P,0.05; Figure 1E, 1H) in both male and female

mice, indicating the development of cardiac dysfunction in vivo.

However, female mice that underwent CLP exhibited significantly

higher EF, FS and FAC in comparison with male mice (P,0.05;

Figure 1E–H), indicating the cardiac dysfunction induced by CLP

was less pronounced in female than in male animals.

Gender Dimorphism of the Phosphorylation of Akt in the
Hearts of Mice Subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) Co-administration
The potential underlying mechanisms behind the observed

gender dimorphism of cardiac dysfunction were investigated by

semi-quantitative western blot analysis of the mouse heart

subjected to LPS/PepG at 18 hours. When compared to male

sham-treated mice, female sham-treated mice showed a higher

degree of phosphorylation of Akt on Ser473 in heart tissue, but

these data were not significant (P.0.05; Figure 2A). Exposure of

male mice to LPS/PepG for 18 hours caused a small and non-

significant increase in the phosphorylation of Akt on Ser473 (P.

0.05; Figure 2A). However, exposure of female mice to LPS/PepG

for 18 hours induced a significant increase in the phosphorylation
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Figure 1. Gender dimorphism of cardiac dysfunction in mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration and in
mice that underwent CLP. Panel A–D: Male or female mice received either LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS intraperitoneally. Cardiac
function was assessed at 18 hours. (A) Representative M-mode echocardiograms; percentage (%) (B) ejection fraction (EF); (C) fractional shortening
(FS); and (D) fractional area of change (FAC). The following groups were studied: Male+vehicle (n = 6); Female+vehicle (n = 4); Male+LPS/PepG (n= 7);
Female+LPS/PepG (n= 8). Panel E–H: Male or female mice were subjected to CLP or sham-operation. Cardiac function was assessed at 24 hours. (E)
Representative M-mode echocardiograms; % (F) EF; (G) FS; and (H) FAC. The following groups were studied: Male+sham-operation (n = 4); Female+

Gender, Cardiac Dysfunction and Sepsis
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of Akt on Ser473 compared with either female sham-treated mice

or male LPS/PepG-treated mice (P,0.05; Figure 2A).

Gender Dimorphism of the Phosphorylation of eNOS in
the Hearts of Mice Subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) Co-administration
When compared to male sham-treated mice, female sham-

treated mice showed a higher degree of phosphorylation of eNOS

on Ser1177 in heart tissue, but these data were not significant (P.

0.05; Figure 2B). Exposure of male mice to LPS/PepG for 18

hours caused a small and not significant increase in the

phosphorylation of eNOS on Ser1177 (P.0.05; Figure 2B).

However, exposure of female mice to LPS/PepG for 18 hours

induced a significant increase in the phosphorylation of eNOS on

Ser1177 compared with either female sham-treated mice or male

LPS/PepG-treated mice (P,0.05; Figure 2B).

Gender Dimorphism of the Phosphorylation of IkBa in
the Hearts of Mice Subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) Co-administration
In sham-treated mice, there was no difference in the phosphor-

ylation of IkBa on Ser32/36 between male and female hearts (P.

0.05; Figure 3A). When compared to sham-treated mice, both

male and female mice subjected to LPS/PepG demonstrated

significant increases in the phosphorylation of IkBa on Ser32/36 in

heart tissue (P,0.05; Figure 3A). However, the increase in IkBa
phosphorylation on Ser32/36 caused by LPS/PepG was signifi-

cantly less pronounced in hearts obtained from female than male

mice (P,0.05; Figure 3A).

Gender Dimorphism of Nuclear Translocation of the p65
NF-kB Subunit in the Hearts of Mice Subjected to LPS
(3 mg/kg)/PepG (0.1 mg/kg) Co-administration
In sham-treated mice, there was no difference of nuclear

translocation of the p65 NF-kB subunit between male and female

hearts (P.0.05; Figure 3B). When compared to sham-treated

mice, both male and female mice subjected to LPS/PepG

demonstrated significant increases in the nuclear translocation of

the p65 NF-kB subunit in heart tissue (P,0.05; Figure 3B).

However, female mice subjected to LPS/PepG exhibited a

significantly attenuated response in the nuclear translocation of

the p65 NF-kB subunit in comparison with male mice (P,0.05;

Figure 3B), indicating an important role of gender in LPS/PepG

induced activation of NF-kB.

Gender Dimorphism of the Expression of iNOS in the
Hearts of Mice Subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) Co-administration
In sham-treated mice, we detected a faint expression of iNOS

protein, but there was no difference of iNOS expression between

male and female hearts (P.0.05; Figure 3C). When compared to

sham-treated mice, LPS/PepG caused significant increases in the

expression of iNOS protein in the heart (P,0.05; Figure 3C).

However, in hearts from female mice subjected to LPS/PepG, the

levels of iNOS protein were significantly lower than in hearts from

male mice subjected to LPS/PepG (P,0.05; Figure 3C).

sham-operation (n = 4); Male+CLP (n = 8); Female+CLP (n = 8). Panel A–H: Data are expressed as means 6 SEM for n number of observations. wP,
0.05 versus the respective sham group, #P,0.05 versus male LPS/PepG or CLP group.
doi:10.1371/journal.pone.0100631.g001

Table 1. Gender dimorphism of heart rate and temperature of mice responses to septic insults.

Parameter Male Female

Sham
LPS (3 mg/kg)/
PepG (0.1 mg/kg) Sham

LPS (3 mg/kg)/
PepG (0.1 mg/kg)

Number 6 7 4 8

Heart Rate (bpm) 543.33623.23 486.14615.07* 569.25616.44 505.75612.16*

Temperature (uC) 35.3860.31 30.3860.87* 35.6260.46 32.2460.94*

Sham CLP Sham CLP

Number 4 8 4 8

Heart Rate (bpm) 537.25625.76 481.13611.98* 546.75610.06 494.25618.69*

Temperature (uC) 35.0260.52 31.1960.67* 35.4560.32 32.0860.81*

Sham LPS (9 mg/kg)/
PepG (1 mg/kg)

Sham LPS (9 mg/kg)/
PepG (1 mg/kg)

Number 5 11 4 6

Heart Rate (bpm) 550.50626.34 456.72612.08* 570.75620.14 448.17628.53*

Temperature (uC) 35.5260.44 29.1660.63* 35.9060.48 29.7061.03*

Heart rate and temperature were recorded at 18 hours in mice subjected to LPS/PepG co-administration and at 24 hours in mice that underwent CLP. Bpm, beats per
minute. Data are expressed as means 6 SEM for n number of observations.
*P,0.05 versus the respective sham group,
#P,0.05 versus male LPS/PepG or CLP group.
doi:10.1371/journal.pone.0100631.t001
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Gender Dimorphism of the Expression of TNF-a and IL-6
in the Hearts of Mice Subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) Co-administration
When compared to male sham-treated mice, female sham-

treated mice showed a lower TNF-a and IL-6 expressions in heart

tissue, but these data were not significant (P.0.05; Figure 3D–E).

When compared to sham-treated mice, both male and female

mice subjected to LPS/PepG demonstrated significant increases in

the expression of TNF-a and IL-6 in heart tissue (P,0.05;

Figure 3D–E). However, female mice subjected to LPS/PepG

exhibited a significantly attenuated response in the expression of

TNF-a and IL-6 in comparison with male mice after LPS/PepG

challenge (P,0.05; Figure 3D–E).

Gender Dimorphism of Cardiac Dysfunction was Blunted
in Response to High Dose of LPS (9 mg/kg)/PepG (1 mg/
kg) Co-administration
To further investigate whether the gender dimorphism still

exists under increased inflammatory stimulus, left ventricular

function was assessed using echocardiography at 18 hours after

intraperitoneal injection of LPS (9 mg/kg)/PepG (1 mg/kg) or

vehicle. Mice injected with LPS/PepG had a lower body

temperature and a lower heart rate in comparison to sham-

treated mice (male sham/female sham versus male+LPS/PepG/

female+LPS/PepG; P,0.05; Table 1). In sham-treated mice,

there was no difference in EF, FS or FAC between male and

female mice (P.0.05; Figure 4A–D). When compared to sham-

treated mice, LPS/PepG caused a significant reduction in EF (P,

0.05; Figure 4A–B), FS (P,0.05; Figure 4A, 4C) and FAC (P,

0.05; Figure 4A, 4D) in both male and female mice, indicating the

development of cardiac dysfunction in vivo. When compared to

male LPS/PepG-treated mice, female mice subjected to LPS/

PepG showed a significant increase in FAC (P,0.05; Figure 4A,

4D), but this was not significant for EF (P.0.05; Figure 4A–B) and

FS (P.0.05; Figure 4A, 4C), indicating that gender dimorphism of

the cardiac dysfunction after septic insult was abrogated by the

severe injury induced by high dose of LPS (9 mg/kg)/PepG

(1 mg/kg) co-administration.

Discussion

We describe here for the first time that the myocardial

dysfunction caused by LPS/PepG is less pronounced in female

than in male mice in vivo. This finding is in agreement with the

previous reports showing that the cardiac dysfunction caused by

myocardial ischemia/reperfusion injury [21], trauma-hemorrhage

[22] and burns [23] is also less pronounced in females than in

males. Estrogen modulates a number of acute injury-related

myocardial responses; specifically estrogen protects the heart

against the injury and dysfunction caused by trauma-hemorrhage

[24] and ischemia/reperfusion injury (in isolated hearts subjected

to global ischemia and in hearts undergoing LAD occlusion in vivo)

[25,26]. Although we provide clear evidence that female hearts

show less dysfunction than male murine hearts when challenged

with LPS/PepG, we wished to confirm this finding by using a

more clinically relevant model of polymicrobial sepsis with

antibiotic therapy and fluid-resuscitation caused by CLP in

middle-aged mice (8 month-old) [18,19]. The age of mice was

selected based on the knowledge that 8 month-old female C57BL/

6 mice are pre-ovarian failure and still have an active estrus cycle

[27]. Most notably, we demonstrate here that the cardiac function

in female mice subjected to polymicrobial sepsis induced by CLP

was significantly less pronounced than the cardiac dysfunction

Figure 2. Gender dimorphism of the phosphorylation of Akt and eNOS in the hearts of mice subjected to LPS (3 mg/kg)/PepG
(0.1 mg/kg) co-administration.Male or female mice received either LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS. Signalling events in heart tissue were
assessed at 18 hours. Densitometric analysis of the bands is expressed as relative optical density (O.D.) of (A) phosphorylated Akt (pSer473) corrected
for the corresponding total Akt content and normalized using the related sham band; (B) phosphorylated eNOS (pSer1177), corrected for the
corresponding total eNOS content and normalized using the related sham band. Each analysis (A–B) is from a single experiment and is representative
of three to four separate experiments. Data are expressed as means 6 SEM for n number of observations. wP,0.05 versus the respective sham
group, #P,0.05 versus male LPS/PepG group.
doi:10.1371/journal.pone.0100631.g002
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Figure 3. Gender dimorphism of the phosphorylation of IkBa, nuclear translocation of the p65 NF-kB subunit, expression of iNOS,
TNF-a and IL-6 in the hearts of mice subjected to LPS (3 mg/kg)/PepG (0.1 mg/kg) co-administration. Male or female mice received
either LPS (3 mg/kg)/PepG (0.1 mg/kg) or PBS. Signalling events in heart tissue were assessed at 18 hours. Densitometric analysis of the bands is
expressed as relative optical density (O.D.) of (A) phosphorylated IkBa (pSer32/36) corrected for the corresponding total IkBa content and normalized
using the related sham band; (B) NF-kB p65 subunit levels in both, cytosolic and nuclear fractions expressed as a nucleus/cytosol ratio normalized
using the related sham bands; (C) iNOS expression corrected for the corresponding tubulin band, and (D) TNF-a expression in heart tissue of mice
subjected to LPS/PepG; (E) IL-6 expression in heart tissue of mice subjected to LPS/PepG. Each analysis (A–E) is from a single experiment and is
representative of three to four separate experiments. Data are expressed as means 6 SEM for n number of observations. wP,0.05 versus the
respective sham group, #P,0.05 versus male LPS/PepG group.
doi:10.1371/journal.pone.0100631.g003
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observed in male mice. Taken together, these findings indicate

that the hearts of young or older female mice exhibit less cardiac

dysfunction in response to polymicrobial sepsis or co-administra-

tion of LPS/PepG.

To obtain a better insight into the mechanisms underlying the

observed gender dimorphism of the cardiac response to sepsis, we

investigated the phosphorylation of Akt, eNOS and IkBa, nuclear
translocation of NF-kB subunit p65, iNOS expression, as well as

TNF-a and IL-6 expression in murine hearts; When compared to

the hearts of male mice subjected to LPS/PepG, hearts of female

mice subjected to LPS/PepG showed i) profound increases in

phosphorylation of Akt and eNOS; ii) reductions in phosphory-

lation of IkBa and nuclear translocation of the NF-kB subunit

p65, iii) reduced expression of the pro-inflammatory cytokines

TNF-a and IL-6, and iv) reduced expression of iNOS.

Akt is a member of the phosphoinositide 3-kinases (PI3K) signal

transduction enzyme family, activation of which protects the heart

against injury [28,29]. Here we demonstrate that co-administra-

tion of LPS/PepG to female rather than male mice leads to a

greater increase in Akt-phosphorylation and, hence, activity in the

heart of female animals. Indeed, a greater increase in cardiac Akt

phosphorylation in female when compared to male hearts also

accounts for the reduced cardiac injury caused by ischemia-

reperfusion in female mice. Most notably, when the Akt-pathway

is blocked, the degree of cardiac injury in male and female mice

was identical. Thus, activation of cardiac Akt (presumably by

estradiol) protects female hearts against cardiac injury and

dysfunction [30]. Estradiol activates cardiac Akt, which in turn

also leads to a reduction in the cardiac dysfunction caused by

trauma-hemorrhage [24,29]. Blockade of the Akt pathway also

abrogated the salutary effects of estradiol on cardiac function

following trauma-hemorrhage [24]. Moreover, activation of Akt

mediates the inhibition by estradiol of the TNF-a expression and

NF-kB activation caused by LPS in cardiomyocytes [31]. In the

present study, we found a small increase in cardiac Akt activity in

female than in male sham hearts. In line with this finding, one

previous study showed that young women possess higher levels of

Akt in the myocardium compared to comparably aged men or

postmenopausal women, and that sexually mature female mice

have elevated Akt kinase activity in nuclear extracts of hearts than

male mice [32]. The hypothesis that cardiac Akt activity is

modulated by estrogen is also supported by the finding that the

Figure 4. Gender dimorphism of cardiac dysfunction was blunted in response to high dose of LPS (9 mg/kg)/PepG (1 mg/kg) co-
administration. Panel A–D: Male or female mice received either LPS (9 mg/kg)/PepG (1 mg/kg) or PBS intraperitoneally. Cardiac function was
assessed at 18 hours. (A) Representative M-mode echocardiograms; percentage (%) (B) ejection fraction (EF); (C) fractional shortening (FS); and (D)
fractional area of change (FAC). The following groups were studied: Male+vehicle (n = 5); Female+vehicle (n = 4); Male+LPS/PepG (n= 11); Female+
LPS/PepG (n= 6). Data are expressed as means 6 SEM for n number of observations. wP,0.05 versus the respective sham group, #P,0.05 versus
male LPS/PepG group.
doi:10.1371/journal.pone.0100631.g004
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Akt activation in cardiomyocytes was reduced in ovariectomized

rats [33]. In addition, activation of the PI3K/Akt signalling

cascade by estrogen was observed in rat cardiomyocytes [29]. A

few studies have been conducted to explain the exact mechanism

by which estrogen induces Akt activation. Estrogen receptor a has

been shown to bind with the p85 a regulatory subunit of PI3K in a

ligand-dependent manner in human endothelial cells; increased

estrogen receptor associated PI3K activity induced by estrogen

leads to the activation of Akt and eNOS in human endothelial cells

[34]. Another study has shown that the direct interaction between

estrogen receptor and the PI3K regulatory subunit p85 in a time-

dependent manner was consistent with the temporal profile for Akt

phosphorylation in neurons [35]. Additionally, in cardiomyocytes,

estrogen stimulated Akt activation and prevented DNA fragmen-

tation [29]. Thus, we propose that the higher cardiac activation of

Akt in female mice importantly contributes to the improvement in

cardiac dysfunction in sepsis.

Activation of Akt is known to modulate eNOS activity through

phosphorylation of eNOS at Ser1177 [36,37]. Indeed, the present

study reported an increase in eNOS phosphorylation in female

than in male hearts, which was correlated with the expression

pattern of Akt. Augmentation of eNOS activity was shown to

decrease sepsis-related increases in neutrophil-endothelial cell

interaction and potentially maintain microvascular patency in

sepsis [38]. There is good evidence that estrogen modulates

activation of eNOS. Estrogen receptor a has been implicated in

increased PI3K/Akt and eNOS activation induced by estrogen in

human endothelial cells [34]. Another study demonstrated that

estrogen stimulation of the eNOS promoter was mediated via

increased activity of the transcription factor Sp1 (which is essential

for the activity of the human eNOS promoter) [39]. Moreover,

estradiol treatment in guinea pigs increased eNOS mRNA in

skeletal muscle, suggesting an increase in eNOS activity [40]. In

line with these findings, data from the present study indicate that

less vulnerability of female hearts to sepsis may be mediated in part

by an increased activity of eNOS, secondary to the activation of

PI3K/Akt pathway.

NF-kB controls the transcription of a large number of genes,

particularly those involved in inflammatory and acute stress

responses, such as cytokines, chemokines, cell adhesion molecules,

apoptotic factors, and other mediators [41]. IkBa inactivates NF-

kB by masking the nuclear localization signals of the NF-kB
proteins and by sequestering NF-kB as an inactive complex in the

cytoplasm [41,42]. Phosphorylation of IkBa by IkB kinase (IKK)

leads to the dissociation of IkBa from NF-kB, which liberates NF-

kB to enter the nucleus and activates the expression of NF-kB
target genes [41]. Up-regulation of NF-kB has been linked to the

development of myocardial dysfunction following the onset of

sepsis [19,43]. Inhibition of NF-kB activation results in improved

myocardial function after septic challenge [18]. Additionally, the

dimer of estrogen and its receptor can bind to NF-kB in osteoblasts

following IL-1b exposure, further, NF-kB is proved to be one of

the targets for estrogen receptor, resulting in reduced IL-6

promoter activity [44]. In murine splenic macrophages, estradiol

inhibited TNF-a and IL-6 production was associated with a

decreased LPS-induced NF-kB-binding activity [44]. Thus, our

present results indicate that less myocardial dysfunction in females

subjected to LPS/PepG could be importantly due to the decreased

activation of NF-kB (secondary to the reduced activation of IkBa
and, hence, nuclear translocation) in murine hearts. Activation of

NF-kB may also mediate myocardial dysfunction through

induction of expression of its target gene iNOS, which plays an

important role in sepsis-related hypotension and impaired left

ventricular function [45,46]. Indeed, in the present study, iNOS

expression was increased in male hearts, which correlates with

their exacerbated cardiac dysfunction under septic insult.

In addition to causing the expression of iNOS, NF-kB activation

also leads to a pronounced increase in production of inflammatory

mediators such as TNF-a and IL-6 [47]. In turn, TNF also

activates NF-kB through TNF-receptor-associated factors, this

increases cytokine production, thus forming a feed-forward

mechanism and amplifying the inflammatory reaction [48]. There

is good evidence that those inflammatory cytokines play a

significant role in the pathogenesis of sepsis-induced cardiac

dysfunction [49,50]. Moreover, clinical studies showed that

stimulation of healthy females with LPS or LTA led to lower

TNF-a and IL-6 levels in blood than males [10]. Female patients

with sepsis had a higher survival rate, which was correlated with

lower TNF-a and higher IL-10 levels [9], while male trauma-

patients showed higher IL-6 level than females [11]. In exper-

imental studies, cardiomyocyte TNF-a and IL-6 release was

markedly lower in female than male rats following burn injury

[23]. In addition, female hearts expressed less myocardial TNF-a
in isolated hearts subjected to ischemia/reperfusion injury [21] or

LPS treatment [51]. Others have suggested that elevated plasma

TNF-a and IL-6 induced by trauma-hemorrhage was prevented

by estradiol treatment in rats [24,52]. Consistent with these

findings, in our study, female mice, which had better cardiac

function following septic insult, expressed less myocardial TNF-a
and IL-6 than male mice subjected to LPS/PepG co-administra-

tion.

Our study demonstrated that the gender dimorphism of cardiac

dysfunction in response to septic insults was abolished by the

severe injury induced by high dose of LPS (9 mg/kg)/PepG

(1 mg/kg) co-administration. This is in line with a report that the

inflammatory cytokine response differed more strongly between

blood from men and women after low-concentration of LPS

stimulation compared with a higher stimulus concentration [10].

Population-based studies on sex dimorphism in mortality after

sepsis showed inconsistent results. Some studies reported increased

mortality in males [7,8], while other studies demonstrated

mortality from severe sepsis/sepsis was not affected by gender

[53,54]. The inconsistency may have resulted from multiple

factors such as pre-existing co-morbidities. More importantly, our

observations of gender dimorphism in cardiac dysfunction

responses to different severities of injury may partially explain

the conflicting clinical data.

It could be argued that the present study did not provide

information about proestrus/estrus or diestrus state of estrus cycle

in female mice subjected to septic insults. In this regard, a recent

study showed that female mice with CLP survived better than

male mice that underwent CLP, but the higher survival in females

did not correspond to any specific estrus phase [55]. Furthermore,

it has been demonstrated vaginal cytology does not reflect changes

of circulating estrogens in females and that the estrus cycle cannot

be predicted by vaginal smears [56]. Moreover, we did not notice

a lot of variations in data obtained from female mice in our study.

Therefore, estrus cycle phases were not monitored in this study.

Conclusion

Our findings provide for the first time a very clear indication of

a gender dimorphism in the sepsis-induced cardiac dysfunction

in vivo and we have shown that female mice have less cardiac

dysfunction than male mice subjected to either co-administration

of LPS/PepG in young mice or CLP in older mice. We report here

that female hearts subjected to sepsis have a greater activation of

Akt/eNOS, and less activation of NF-kB, which in turn results in
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reduced expression of the proinflammaroy cytokines TNF-a and

IL-6 as well as iNOS. We propose that the above pro-survival and

anti-inflammatory signalling events contribute to the reduced

cardiac dysfunction in female mice with sepsis.
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