141 research outputs found
Near-surface distribution of pollutants in coastal waters as assessed by novel polyethylene passive samplers
We report a novel and inexpensive method to provide high resolution vertical measurements of temporally integrated organic contaminants in surface and sub-surface waters in polluted coastal environments. It employs a strip of polyethylene deployed as a passive sampler. Verifications are confirmed via conventional spot sample analyses and against Performance Reference Compound (PRC) calibration methods. Analytes targeted include 16 Polycyclic Aromatic Hydrocarbons, 15 personal care products, 8 organophosphorus flame retardants, 4 antifouling ‘booster’ biocides and 15 n-alkanes. Whilst all contaminants typically revealed homogeneous concentrations from 10 cm to 3 m depth in the selected harbour (< 30% variations), many increased sharply at the air-sea interface. The passive sampler was shown to afford better resolution than could be achieved using conventional analytical techniques at the surface microlayer (SML). Whilst hydrophobicity appeared to be a key factor for the enrichment of many determinants, less correlation was found for the emerging contaminants. © 2017 Elsevier Lt
Emergent synergistic lysosomal toxicity of chemical mixtures in molluscan blood cells (hemocytes)
The problem of effective assessment of risk posed by complex mixtures of toxic chemicals in the environment is a major challenge for government regulators and industry. The biological effect of the individual contaminants, where these are known, can be measured; but the problem lies in relating toxicity to the multiple constituents of contaminant cocktails. The objective of this study was to test the hypothesis that diverse contaminant mixtures may cause a greater toxicity than the sum of their individual parts, due to synergistic interactions between contaminants with different intracellular targets. Lysosomal membrane stability in hemocytes from marine mussels was used for in vitro toxicity tests; and was coupled with analysis using the isobole method and a linear additive statistical model. The findings from both methods have shown significant emergent synergistic interactions between environmentally relevant chemicals (i.e., polycyclic aromatic hydrocarbons, pesticides, biocides and a surfactant) when exposed to isolated hemocytes as a mixture of 3 & 7 constituents. The results support the complexity-based hypothesis that emergent toxicity occurs with increasing contaminant diversity, and raises questions about the validity of estimating toxicity of contaminant mixtures based on the additive toxicity of single components. Further experimentation is required to investigate the potential for interactive effects in mixtures with more constituents (e.g., 50 –100) at more environmentally realistic concentrations in order to test other regions of the model, namely, very low concentrations and high diversity. Estimated toxicant diversity coupled with tests for lysosomal damage may provide a potential tool for determining the toxicity of estuarine sediments, dredge spoil or contaminated soil
Oxidative stress, lysosomal damage and dysfunctional autophagy in molluscan hepatopancreas (digestive gland) induced by chemical contaminants
Autophagy is a highly conserved evolutionary survival or defence process that enables cells and organisms to survive periods of environmental stress by breaking down cellular organelles and macromolecules in autolysosomes to provide a supply of nutrients for cell maintenance. However, autophagy is also a part of normal cellular physiology that facilitates the turnover of cellular constituents under normal conditions: it can be readily augmented by mild environmental stress; but becomes dysfunctional with severe oxidative stress leading to cellular pathology. The molluscan hepatopancreas or digestive gland provides a versatile and environmentally relevant model to investigate lysosomal autophagy and stress-induced dysfunctional autophagy. This latter process has been implicated in many animal and human disease conditions, including degenerative and neurodegenerative diseases, as well as obesity related conditions. Many environmental pollutants have also been found to induce dysfunctional autophagy in molluscan hepatopancreatic digestive cells, and in this study, the marine blue mussel Mytilus galloprovincialis was exposed for 7 days to: 0.1 μM, 1 μM and 10 μM concentrations of fluoranthene and phenanthrene (PAHs); chlorpyrifos and malathion (organophosphorus compounds); atrazine (triazine herbicide); copper (transition metal) and dodecylbenzene sulphonic acid (LAS, surfactant). The marine snail or periwinkle, Littorina littorea, was also exposed to phenanthrene, chlorpyrifos and copper. Indices of oxidative stress, cell injury and dysfunctional autophagy were measured (i.e., lysosomal membrane stability, protein carbonyls, lipofuscin, and lysosomal accumulation of lipid or lipidosis). Evidence of oxidative stress, based on the elevation of lipofuscin and protein carbonyls, was found for all compounds tested; with chlorpyrifos being the most toxic to both species. Dysfunctional autophagy was induced by all of the compounds tested in both species, except for atrazine in mussels. This failure of normal autophagy was consistently associated with oxidative stress. Autophagic dysfunction is an important emerging feature in the aetiology of many disease conditions in animals and humans; and an explanatory conceptual mechanistic model has been developed for dysregulation of autophagy in response to oxidative stress
Transformation of C60 fullerene aggregates suspended and weathered under realistic environmental conditions
The occurrence, fate and behaviour of carbon nanomaterials in the aquatic environment are dominated by their functionalization, association with organic material and aggregation behaviour. In particular, the degradation of fullerene aggregates in the aquatic environment is a primary influence on their mobility, sorption potential and toxicity. However, the degradation and kinetics of water suspensions of fullerenes remain poorly understood.
In the present work, first, an analytical method based on liquid chromatography and high-resolution mass spectrometry (LC-HRMS) for the determination of C60 fullerene and their environmental transformation products was developed. Secondly, a series of C60 fullerene water suspensions were degraded under relevant environmental conditions, controlling the salinity, the humic substances content, the pH and the sunlight irradiation. Up to ten transformation products were tentatively identified, including epoxides and dimers with two C60 units linked via one or two adjacent furane-like rings. Fullerenols were not observed under these environmentally relevant conditions.
The kinetics of generation of each transformation product were studied with and without simulated sunlight conditions. The ionic strength of the media, its pH and the humic substances content were observed to modulate the kinetics of generation
Evaluation of the Genotoxic and Physiological Effects of Decabromodiphenyl Ether (BDE-209) and Dechlorane Plus (DP) Flame Retardants in Marine Mussels (Mytilus galloprovincialis)
Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-20
Land Law, Property Ideologies and the British-Irish relationship
English and Irish land law are deeply influenced by the historical context of the British-Irish relationship, yet property scholarship comparing the two jurisdictions is surprisingly rare. The current Brexit negotiations provide a timely reminder of the strategic importance of property and trade relations between the two countries; and of their related-but-different legal cultures. In this article we examine how the property cultures of England and Ireland were shaped by the politics and practices of land tenure, by competing economic and property ideologies, and by the influence of both on national identity and statehood in both jurisdictions. The article reveals the role of local contexts and events in shaping land reform, and demonstrates the fertile potential of the comparative frame to contextualise each jurisdiction’s doctrines and practices. As domestic land law systems are drawn together in the context of emerging EU jurisdiction over areas like mortgage credit, each jurisdiction’s underpinning ideological commitments have important implications for the ease – or not – of attempts to harmonize member state practices. We explain the alignments and divergences between domestic underpinnings of Irish and English law, and reflect on the implications of our findings for contemporary property problems in the context of evolving economic and political relationships between the UK and Ireland
Evidence gaps and biodiversity threats facing the marine environment of the United Kingdom’s Overseas Territories
Understanding the evidence base and identifying threats to the marine environment is critical to ensure cost-effective management and to identify priorities for future research. The United Kingdom (UK) government is responsible for approximately 2% of the world’s oceans, most of which belongs to its 14 Overseas Territories (UKOTs). Containing biodiversity of global significance, and far in excess of the UK mainland’s domestic species, there has recently been a strong desire from many of the UKOTs, the UK Government, and NGOs to improve marine management in these places. Implementing evidence-based marine policy is, however, challenged by the disparate nature of scientific research in the UKOTs and knowledge gaps about the threats they face. Here, we address these issues by systematically searching for scientific literature which has examined UKOT marine biodiversity and by exploring publicly available spatial threat data. We find that UKOT marine biodiversity has received consistent, but largely low, levels of scientific interest, and there is considerable geographical and subject bias in research effort. Of particular concern is the lack of research focus on management or threats to biodiversity. The extent and intensity of threats vary amongst and within the UKOTs but unsurprisingly, climate change associated threats affect them all and direct human stressors are more prevalent in those with higher human populations. To meet global goals for effective conservation and management, there is an urgent need for additional and continued investment in research and management in the Overseas Territories, particularly those that have been of lesser focus
- …