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Abstract  

Autophagy is a highly conserved evolutionary survival or defence process that enables 

cells and organisms to survive periods of environmental stress by breaking down cellular 

organelles and macromolecules in autolysosomes to provide a supply of nutrients for cell 

maintenance. However, autophagy is also a part of normal cellular physiology that 

facilitates the turnover of cellular constituents under normal conditions: it can be readily 

augmented by mild environmental stress; but becomes dysfunctional with severe 

oxidative stress leading to cellular pathology. The molluscan hepatopancreas or 

digestive gland provides a versatile and environmentally relevant model to investigate 

lysosomal autophagy and stress-induced dysfunctional autophagy.  This latter process 

has been implicated in many animal and human disease conditions, including 

degenerative and neurodegenerative diseases, as well as obesity related conditions. 

Many environmental pollutants have also been found to induce dysfunctional autophagy 

in molluscan hepatopancreatic digestive cells, and in this study, the marine blue mussel 

Mytilus galloprovincialis was exposed for 7 days to: 0.1 µM, 1 µM and 10 µM 

concentrations of fluoranthene and phenanthrene (PAHs); chlorpyrifos and malathion 

(organophosphorus compounds); atrazine (triazine herbicide); copper (transition metal) 

and dodecylbenzene sulphonic acid (LAS, surfactant). The marine snail or periwinkle, 

Littorina littorea, was also exposed to phenanthrene, chlorpyrifos and copper. Indices of 

oxidative stress, cell injury and dysfunctional autophagy were measured (i.e., lysosomal 

membrane stability, protein carbonyls, lipofuscin, and lysosomal accumulation of lipid or 

lipidosis). Evidence of oxidative stress, based on the elevation of lipofuscin and protein 

carbonyls, was found for all compounds tested; with chlorpyrifos being the most toxic to 

both species. Dysfunctional autophagy was induced by all of the compounds tested in 

both species, except for atrazine in mussels. This failure of normal autophagy was 

consistently associated with oxidative stress. Autophagic dysfunction is an important 

emerging feature in the aetiology of many disease conditions in animals and humans; 

and an explanatory conceptual mechanistic model has been developed for dysregulation 

of autophagy in response to oxidative stress. 
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Introduction  

Autophagy is a highly conserved evolutionary survival or defence process that enables 

cells and organisms to survive periods of environmental stress by breaking down cellular 

organelles and macromolecules in autolysosomes to provide a supply of nutrients for cell 

maintenance (Cuervo, 2004, 2008; Klionsky et al., 2016). However, autophagy is also a 

part of normal cellular physiology that facilitates the turnover of cellular constituents 

under normal conditions: it can be readily augmented by mild environmental stress; but 

becomes dysfunctional with severe stress, such as oxidative stress, leading to cellular 

injury, with consequent tissue atrophy and organ pathology and reduction in 

physiological scope for growth (Boya, 2012; Cuervo, 2004, 2008; Lowe, 1988; Moore, 

1982, 1988; Moore et al., 2006a, 2007a, b, 2015; Numan et al., 2015; Sforzini et al., 

2018; Shaw et al., 2011). The molluscan hepatopancreas or digestive gland is a liver 

analogue that provides a versatile and environmentally relevant model to investigate 

lysosomal autophagy and stress induced dysfunctional autophagy (Lowe et al., 2006; 

Moore et al., 2006a, b, 2007b; Sforzini et al., 2018; Shaw et al., 2011).  This latter 

process has been implicated in many animal and human disease conditions, including 

fibromyalgia, degenerative and neurodegenerative diseases, as well as obesity related 

conditions (Chen et al., 2012; Colacurcio et al 2018; Jiang & Mizushima, 2014; 

Namkoong et al., 2018; Nixon, 2013; Numan et al., 2015; Oezel et al., 2016). 

 

Molluscan digestive cells have a highly developed lysosomal-vacuolar system that is 

essential for the digestion of endocytosed food particles by the process of intracellular 

digestion: the major component of digestion in mussels and periwinkles (Moore et al., 

2006a; Moore, 1988). In addition to this heterophagic lysosomal digestion, digestive cells 

also have a highly developed capacity for lysosomally mediated autophagic digestion of 

cellular constituents including organelles and macromolecules (Koukouzika et al., 2009; 

Lowe, 1988; Moore et al., 2006a, 2007a, b; Sforzini et al., 2018).  Effective performance 

of the autophagic processes is essential for the normal recycling of damaged and 

redundant proteins and organelles, as well as mobilisation of stored reserves for 

gametogenesis (Bayne et al., 1978; Lowe et al., 1982). Autophagy has a protective role 

in physiological responses to low-level environmental stress: however, more severe 

stress results in functional perturbation of autophagy leading to the pathological 

reactions described as dysfunctional autophagy (Boya, 2012; Cuervo, 2004; Dimitriadis 
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et al., 2004; Domouhtsidou et al. 2001; Moore, 2008; Moore et al., 2006b, 2008; Numan 

et al., 2015; Sforzini et al., 2018; Shaw et al., 2011). 

 

Many environmental pollutant chemicals can induce oxidative stress that, in turn, can 

contribute to autophagic responses (Moore et al., 2006a, 2007b). If the oxidative stress 

becomes severe then the initial protective autophagic response can lead to a 

pathological dysfunctional autophagic reaction (Moore, 2008, 2010). Industrial and 

domestic incomplete combustion processes and oil spills, as well as vehicle emissions 

and road/tyre dust contribute to the influx of polycyclic aromatic hydrocarbons in air 

pollution and into the aquatic environment (Cajaraville et al., 1995; Numan et al., 2015; 

Shaw et al., 2011). Pest control and agricultural use are major contributors to the release 

of herbicides and pesticides into the aquatic environment. Environmental contaminants 

tested in the current study of oxidative stress, lysosomal damage and dysfunctional 

lysosomal autophagy include polycyclic aromatic hydrocarbons (phenanthrene & 

fluoranthene), pesticides (malathion & chlorpyrifos) a herbicide (atrazine), a surfactant 

(sodium dodecylbenzene sulphonate - LAS) and the transition metal copper (Moore et 

al., 2018; Readman et al., 2002). Copper, a known inducer of oxidative stress, has been, 

and is still, a global priority pollutant of fresh and marine waters (Hamed et al. 2006; 

Langston et al., 1999). These chemicals have been chosen on the basis of their well-

documented toxicity and their continued presence in the environment in various parts of 

the world (Cassee et al., 1998; LeBlanc & Olmstead, 2004).  

 

The aim of this investigation was to test for the induction of dysfunctional autophagy in 

molluscan hepatopancreatic digestive cells, associated with oxidative stress, by 

deploying biomarkers of cellular health in the marine blue mussel Mytilus 

galloprovincialis treated with fluoranthene and phenanthrene (PAHs); chlorpyrifos and 

malathion (OP - organophosphorus compounds); atrazine (triazine herbicide); copper 

(transition metal) and LAS (surfactant), at concentrations of 0.1 µM, 1 µM and 10 µM, for 

7 days. In addition, marine snails or periwinkles (Littorina littorea) were also treated with 

chlorpyrifos, phenanthrene and copper at the same concentrations and for the same 

time period as the mussels. Animal health was assessed by measuring indices of 

oxidative damage and autophagy (protein carbonyls and lysosomal lipofuscin - 

lipofuscinosis), cellular health (lysosomal membrane damage) and fatty change 

(equivalent to steatosis in mammalian liver); with a pathological dysfunctional autophagic 
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accumulation of triglyceride (lipidosis) in abnormally enlarged autolysosomes 

(Domouhtsidou et al. 2001; Lowe, 1988; Moore, 1988; Moore et al., 2006a, 2007b). Data 

for lysosomal and oxidative stress biomarkers was synthesised using multivariate 

analysis, with the first principal component being used as an integrated index of “health 

status” (Allen & Moore, 2004; Moore et al., 2006a; Sforzini et al., 2018). 

 

Materials & Methods  

Chemicals 

Most chemicals were obtained from Sigma-Aldrich, unless stated otherwise. Anthracene 

and phenanthrene were > 99% pure; LAS (dodecylbenzene sulphonate) was 

Pharmaceutical Secondary Standard - Certified Reference Material; pesticides and 

herbicides were analytical standard grade; DMSO (> 99.9%); and neutral red powder 

(N4638) was graded as suitable for cell culture. Other reagents used were of ANALAR 

grade. Cytochemical substrates for lysosomal hydrolases, naphthol-AS-BI-N-acetyl-β-

gluosaminide and naphthol-AS-BI-β-glucuronide, were obtained from Sigma-Aldrich. The 

diazonium coupler fast red-violet LB was obtained from Difco Laboratories. The anti-

DNPH (dinitrophenyl) primary antibody (A6435), Nanogold secondary antibody (A-

24926) and the silver enhancement kit (L24919) were purchased from Molecular Probes, 

UK.  

 

Animal Husbandry and Experimental Treatments 

Mussels Mytilus galloprovincialis (4.8 – 5.2 cm) were collected from Trebarwith Strand, 

North Cornwall, U.K. (avoiding the spawning period); and periwinkles (littorinids) Littorina 

littorea (2 - 2.5 cm) were collected from Port Quin, North Cornwall, U.K. The animals 

were placed in 34 psu, 15 ± 1ºC, 1 µm filtered sea water (aerated) to acclimate for one 

week. Sea water was replaced daily. Mussels were fed 30 mg/animal/day of dried kelp 

continuously via a peristaltic pump throughout the exposures and periwinkles were fed 

green sea lettuce Ulva (collected from Port Quin) ab libitum. The animals were divided 

into five treatments: control (C), solvent or vehicle control (VC; 0.02% DMSO), and 0.1 

µM, 1 µM and 10 µM initial chemical concentrations, which were renewed on a daily 

basis. Mussels were treated in 10L polypropylene tanks (10 animals/tank and natural 

daylight regime) with atrazine, chlorpyrifos, copper, fluoranthene, dodecylbenzene 

sulphonic acid (a linear alkylbenzene sulphonate, LAS), malathion and phenanthrene. 

Periwinkles were exposed as with the mussels to chlorpyriphos, copper and 
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phenanthrene. Neither Cu nor malathion required the use of a solvent (DMSO). Animals 

were dosed with the contaminant each day for 7 days and sampled on day 0 and day 7. 

Digestive glands were carefully removed, plunged into liquid nitrogen and stored at -

40ºC.  

 

Chemical Analyses – Water and Digestive Gland 

Fluoranthene, phenanthrene, chlorpyrifos, malathion and atrazine analyses 

Half an hour after the contaminant was added to the exposure vessels, 250 ml water 

samples were removed, taking care to avoid the putative surface microlayer, and placed 

in acid washed, hexane rinsed, stoppered glass vessels. 50 ml of dichloromethane 

(DCM) was added to stabilize the samples before being kept at 4ºC until analysis (DCM 

was omitted for Cu samples). The samples were analysed for organic contaminants 

essentially as described by Kelly et al. (2000). The clean-up was derived from Readman 

et al. (2002), and was rigorously tested for performance/recoveries using spiked 

standards. 

 
Water samples (including the DCM) were spiked with an internal deuterated standard, 

mixed and then transferred directly to a glass separating flask fitted with a PTFE tap. 

The phases were shaken vigorously for 2 minutes and allowed to settle for a further 2 

min before the solvent phase was run off into round bottomed flasks. This extraction 

procedure was repeated twice with additional DCM. The combined DCM fraction was 

dried using a small amount of anhydrous sodium sulphate (Na2SO4). To remove the 

Na2SO4, the extracts were transferred to a second series of round bottom flasks with 

rinsings from the original flasks. The extracts were concentrated down to ~ 2 ml using a 

BUCHI rotary evaporator before being transferred to the final analysis vials and blown 

down to 1 ml. Analysis was performed using gas chromatography mass spectrometry. 1 

µl of sample was injected into a 30 m x 0.250 DB-5MS column with helium used as the 

carrier gas. The injector was set on splitless, with a temperature of 250ºC. The oven had 

an initial temperature of 40oC which was held for 2 mins before being ramped at 6ºC per 

min to reach a final temperature of 300ºC. 

 

Digestive glands and remainder tissues were stored at -80ºC prior to analysis (Law et 

al., 1999). The samples were allowed to defrost at room temperature. A sub-portion was 

freeze dried to obtain moisture content. The mussel tissues were weighed into round 
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bottom flasks, spiked with a deuterated internal standard and digested by adding 20 g of 

potassium hydroxide pellets and 100 ml of methanol (saponification).  The samples were 

refluxed for 4 hours and filtered through glass fibre filters. The filtrate was placed into 

separating flasks with 50 ml n-pentane and shaken for 2 min and allowed to settle and 

separate for a further 2 min after which the phases were separated by running off the 

lower layer and collecting the upper n-pentane layer. This extraction procedure was 

carried out a second time and the n-pentane layers combined and dried over Na2SO4. 

The samples were reduced to ~5ml by rotary evaporation. Due to the release of lipids 

and co-extractives a clean up using alumina and silica was required.  

 

To ensure the quality of the analytical results, reagent blanks and recoveries were run 

with each batch.  Good quantitative data was achieved using relevant deuterated 

internal standards. Instrument calibration and instrument response factors were run and 

calculated for each batch of analyses. 

  

LAS analysis in water 

LAS was determined by fluorimetry, using a Perkin Elmer LS-50B fluorometer and 

FLWinlab program. New standards were prepared on a daily basis to prevent standard 

degradation. The standard range was 0 – 2.5 mg/L and quenching occurred around 3 

mg/L. No sample preparations were necessary and both standards and samples were 

analysed using a quartz cuvette under the following conditions: excitation wavelength – 

231 nm; emission wavelength – 301 nm; excitation slit width -10 nm; emission slit width 

– 10 nm; emission filter – 350 nm cut off. 

 

Chlorpyrifos, malathion and LAS were not measured in tissue because they are 

comparatively polar, are difficult to extract and isolate, and tend not to bioaccumulate. 

 

Cu determination 

Copper was determined using a combination of flame and graphite furnace atomic 

absorption spectrophotometry, depending on concentration. Analysis of tissues was 

performed on freeze-dried samples following microwave digestion in high purity (Aristar) 

nitric acid. (Langston et al. 1999). 
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Cytochemical Determinations for Lysosomal Stability , Lipofuscin and Lysosomal 

Neutral Lipids 

The following assays were all performed on 10 µm frozen sections of mussel and 

periwinkle digestive gland. Lipofuscin was determined via the Schmorl assay as 

described by Moore (1988). Lysosomal membrane stability was measured by 

determining the latency period for N-acetyl-β-hexosaminidase activity (mussels), and  β-

glucuronidase (periwinkles) (Moore, 1988; Moore et al., 2008; Sforzini et al., 2018). 

Lysosomal accumulation of neutral lipids (triglycerides) was determined using the Oil 

Red O method (Moore et al., 2008). Lipofuscin and lysosomal neutral lipid were 

assessed using series of micrographs based on increasing relative absorbance of their 

respective cytochemical reaction product (Moore 1988; Moore et al., 2006a, 2007b, 

2008). 

 

Immunocytochemical Determination for Protein Carbon yls 

Protein carbonyls were determined immunocytochemically in 10 µm frozen sections of 

digestive gland method using a modified 2,4-dinitrophenylhydrazine detection method 

(Alamdari et al., 2005; Frank et al., 2005; Smith et al., 1998; Shaw et al., 2011). 

Following sectioning, the sections were mounted on slides and air dried at room 

temperature for 1 hour. Subsequently, the sections were fixed in Baker’s calcium formal 

fixative solution (10% formaldehyde, 2.5% sodium chloride, 1% calcium chloride) for 5 

minutes at 4oC. The slides were rinsed in distilled water before being incubated in 2,4-

dinitrophenylhydrazine (10 mM DNPH in 6M guanidine hydrochloride, 0.5 M potassium 

phosphate buffer, pH 2.5) solution for 45 min at room temperature in a humidity box in 

the dark (Alamdari et al., 2005; Frank et al., 2005; Smith et al., 1998). Following this, the 

slides were rinsed in distilled water followed by PBS for 10 minutes, and a blocking 

solution was applied (non-fat dried milk 1:10 in PBS) for 10 minutes. The slides were 

placed in anti-DNPH (1:100 in PBS) overnight at 4oC. The slides were then rinsed in 

PBS before being incubated in nano-gold secondary antibody overnight at 4oC. 

Following this, the slides were washed in sodium citrate buffer (3 M sodium chloride, 300 

mM sodium citrate, pH 7) before silver enhancement. Protein carbonyls were assessed 

by construction of a series of micrographs based on increasing protein carbonyl 

immunocytochemical reaction product density (Moore 1988; Moore et al., 2008; Shaw et 

al., 2011). 
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Univariate Statistical Analysis 

The non-parametric Mann-Whitney U-test was used to compare the data from treated 

animals with those of the controls (Sforzini et al., 2018). 

 

Multivariate Analysis 

Biomarker data for mussels and periwinkles exposed to the seven test chemicals were 

analysed using non-parametric multivariate analysis software, PRIMER v 6 (PRIMER-E - 

University of Auckland, New Zealand; Clarke, 1999; Clarke & Warwick, 2001; Moore et 

al., 2006a). All data were log transformed [logn(1 + x)] and standardised to the same 

scale. Correlations between biomarkers were tested using a scatter plot matrix (PRIMER 

v 6, Draftsman Plot). Principal component analysis (PCA) and hierarchical cluster 

analysis, derived from Euclidean distance similarity matrices were used to visualise 

dissimilarities between sample groups. The results were further tested for significance 

using analysis of similarity (PRIMER v6 - ANOSIM), which is an approximate analogue 

of the univariate ANOVA and reflects on differences between treatment groups in 

contrast to differences among replicates within samples (the R statistic). Under the null 

hypothesis H0 (“no difference between samples”), R = 0 and this was tested by a non-

parametric permutations approach; there should be little or no effect on the average R 

value if the labels identifying which replicates belong to which samples are randomly 

rearranged. 

 

Finally, in order to map integrated biomarker data onto “health status space”, measured 

primarily as the first principal component - PC1 for the biomarker data, the individual 

biomarkers were correlated with PC1 from the integrated evaluation (Allen and Moore, 

2004; Moore et al., 2006a; Sforzini et al., 2015, 2017, 2018). 

 

Results  

Chemistry  (see Table 1)  

No nominal water values matched the dose concentrations. This probably resulted from 

several factors. Water samples were not taken for half an hour after sampling, to allow 

dispersal, however during this period the contaminants may have sorbed onto the 

exposure tanks surfaces, suspended particulate matter or the animals themselves. 

Alternatively, they may have been ingested, in particular by the filter feeding mussels.  
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Tissue concentrations of the xenobiotics measured indicated that the two PAHs were 

accumulated in mussel digestive gland (Table 1). Phenanthrene accumulated in the 

periwinkle digestive gland; but to a lesser extent than in the mussels (Table 1). Copper 

accumulated in both species, and the concentrations in the periwinkle digestive gland 

were greater than in the mussels (Table 1). 

 

Biomarkers (see Table 2: summary of results; Figures 1-5) 

Lipofuscin 

Lipofuscin in mussels was increased significantly (p ≤ 0.05) at all exposure 

concentrations for both phenanthrene and fluoranthene (Fig. 1). Lipofuscin was also 

elevated at 0.1 µM and 10 µM for malathion (Fig. 1). Liposfuscin was only significantly 

higher within the 10 µM exposure mussels for LAS, copper and chlorpyrifos, while there 

were no significant changes following atrazine exposure (Fig. 1). 

 

Lipofuscin in littorinid snails was significantly (p ≤ 0.05) elevated in all exposure 

concentrations for phenanthrene (Fig. 5). Lipofuscin was significantly higher in the 1 µM 

and 10 µM animals exposed to chlorpyrifos, while the 10 µM concentration of copper 

induced a significant increase (Fig. 5). 

 

Lysosomal membrane stability (based on latency of N-acetyl-β-hexosaminidase for 

mussels & β-glucuronidase for littorinids) 

Mussel lysosomal stability was significantly decreased (p ≤ 0.05) in all concentrations for 

chlorpyrifos (Fig. 2), and in the 1 µM and 10 µM concentrations for atrazine (Fig. 2), 

fluoranthene, phenanthrene (Fig. 2) and malathion (Fig. 2). Lysosomal stability was only 

seen to significantly decrease in 10 µM copper and LAS treatments (Fig. 2).  

 

Periwinkle lysosomal stability significantly decreased at all concentrations for 

chlorpyrifos, at 1 µM and 10 µM for phenanthrene, and only at the 10 µM copper 

concentration (Fig. 5). 

 

Fatty change & autolysosomal lipids (triglycerides) 

Mussel neutral lipids (triglycerides), within swollen autolysosomes (i.e., increase in 

lysosomal/cytoplasmic volume ratio – L/C vol), were increased significantly (p ≤ 0.05) in 

all chlorpyrifos exposure treatments (Fig. 3). Lipids were also significantly elevated in the 
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10 µM LAS, 1 µM fluoranthene and 0.1 µM copper treatments (Fig. 3). However, neutral 

lipids were significantly decreased in the 1 µM and 10 µM malathion exposures (Fig. 3); 

and there were no differences in lipids in mussels exposed to atrazine (Fig. 3). 

 

Periwinkle neutral lipids, again within swollen autolysosomes, were significantly elevated 

(p ≤ 0.05) in all exposure treatments for chlorpyrifos and copper; and in the 1 µM and 10 

µM phenanthrene treatments Fig. 5). 

 

Protein carbonyls 

Mussel protein carbonyls were significantly (p ≤ 0.05) elevated in the 1 µM and 10 µM 

atrazine, copper, fluoranthene and LAS exposure treatments and in the 10 µM 

chlorpyrifos, malathion and phenanthrene treatments (Fig. 4).  

 

Periwinkle protein carbonyls were significantly (p ≤ 0.05) increased in the 1 µM and 10 

µM chlorpyrifos and phenanthrene treatments; and at all three concentrations of copper  

treatment (Fig. 5). 

 

Multivariate analysis 

Principal component (PCA) and hierarchical cluster analysis of all the biomarker 

reactions showed that the various treatments had a detrimental effect on the digestive 

cells of both mussels and periwinkles (Fig. 6, 7 & 8). Analysis of similarity showed that 

these clusters were significantly different (ANOSIM, p ≤ 0.001); and clear separation of 

the effects of different treatments was apparent in the PCA and Cluster plots (Fig. 6, 7 & 

8), and particularly for the periwinkles (Fig. 8). Regression analysis (Scatter Plot 

matrices, not shown) of the mussel biomarker data for the four most toxic treatments 

(i.e., chlorpyrifos, copper, fluoranthene & phenanthrene) indicated that LMS, was 

inversely correlated with lipofuscin, lysosomal lipid and protein carbonyls; and that 

lipofuscin was correlated with lysosomal lipid, except for the phenanthrene treatment, 

and protein carbonyls (Table 3). However, lysosomal lipid and protein carbonyls were 

not correlated (Table 3).  

 

When all chemical treatments were analysed together for both species of mollusc, all 

four biomarkers were strongly correlated (p ≤ 0.001) with the first Principal Components 

(Table 4). 
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Discussion  

Indices of oxidative stress, cell injury and dysfunctional autophagy were assessed in 

both species of mollusc (i.e., lysosomal membrane stability, lipofuscin, protein carbonyls, 

and fatty change involving lysosomal accumulation of lipid [triglyceride] or lipidosis). 

Evidence of oxidative stress, based on the elevation of lipofuscin and protein carbonyls, 

was found for all compounds tested; with chlorpyrifos being the most toxic to both 

species (Sohal & Brunk, 1989, Sforzini et al., 2018; Shaw et al., 2011). Dysfunctional 

autophagy was induced by all of the compounds tested in both species, except for 

atrazine in mussels. Furthermore, dysfunctional autophagy was characterised by 

reduced lysosomal membrane integrity, increased lipofuscin or lipofuscinosis (indicative 

of oxidative stress) and increased lysosomal lipid or lipidosis (Moore et al., 2006a, 

2007b; Terman & Brunk, 2002). This failure of normal autophagy was generally 

associated with oxidative stress (Moore et al., 2006b, 2007a, b, 2008).  

 

All of the chemicals tested in this study induced some degree of oxidative stress (Table 

2). ROS can damage lipoprotein membranes, and cellular proteins producing protein 

carbonyls and other oxidative products (Shaw et al., 2011; Sforzini et al., 2018). The 

damaged proteins and membranes are normally removed by autophagy; however, if the 

level of intracellular damage becomes excessive due to severe oxidative stress, then the 

autophagic processes are overwhelmed and become dysfunctional (Fig. 9). Lipofuscin 

build-up as a result of lipid peroxidation of autophagocytosed lipoprotein membranes 

(e.g., mitochondria and endoplasmic reticulum) is an effective biomarker for moderate to 

severe oxidative stress. However, lipofuscin, long thought of as an inert waste product of 

“cellular housekeeping”, is an effective generator of ROS due to Fenton reactions 

mediated by lipofuscin-bound iron, thereby, inhibiting lysosomal degradation (Grune et 

al., 2004; Terman & Brunk, 2004). The inference is that abnormal accumulation of 

lipofuscin in autolysosomes (i.e., lipofuscinosis) will result in excessive ROS production 

and oxidative stress (Fig. 9). ROS generation in vivo hepatopancreatic digestive cells 

has been demonstrated by Winston et al. (1991), indicating that there is a highly reactive 

oxidative intra-lysosomal environment in these cells (Terman & Brunk, 2002). 

 

Fatty change is often a cellular pathological feature of a number of diseases including 

those resulting from exposure to a variety of organic xenobiotics (Fig. 9; Klaunig et al., 
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2018). However, somewhat paradoxically starvation can also induce fatty change in  

mammals (Kneeman et al., 2012; Ohama et al., 1994), although there is no evidence for 

this pathological reaction in molluscs (Moore et al., unpublished data). This excess 

cytoplasmic lipid (triglyceride) can be autophagocytosed (lipophagy) and accumulates in 

autolysosomes: a condition known as lipidosis and effective autophagic degradation of 

intracellular material is inhibited by fatty change (Cingolani & Czaja, 2016; Koukouzika et 

al., 2009; Moore, 1988; Moore et al., 2007b; Ward et al., 2016; Yan et al., 2017).  

 

The overall consequence is that oxidative stress results in reduced food uptake by 

inhibition of endocytosis, and augmented autophagy of damaged organelles, lipoprotein 

membranes and proteins (Fig.9; Flinn & Backer, 2010; Han & Wang, 2018; Sforzini et 

al., 2018). As the severity of oxidative stress increases, normal lysosomal and 

autophagic function is dysregulated, with reduced lysosomal membrane stability, 

intralysosomal build-up of triglyceride, phospholipid and lipofuscin; and further 

generation of ROS from the lipofuscin (Moore et al., 2006a, 2007b; Terman & Brunk, 

2002). 

 

This pathological syndrome of oxidative stress-linked dysfunctional autophagy is a major 

contributor to programmed cell death (PCD; Fig. 9), probably mediated by both 

apoptosis (PCD Type 1) and autophagic cell death (PCD Type 2) (Cuervo, 2008; Das et 

al., 2012; Lowe, 1988; Shimizu et al., 2014).  The consequences for the animal will be 

digestive gland tissue atrophy as described by Lowe (1988), loss of fecundity and overall 

functional deterioration leading to death (Bayne et al., 1978; Lowe et al., 1982). 

 

PAHs are known to accumulate in molluscan digestive cell lysosomes and cause 

damage to the membrane (Moore et al., 2004, 2006a, 2007a, b; Sforzini et., 2018). 

Moore (1988) reported enlarged lysosomes, lipidosis, lipofuscinosis and a large 

reduction in lysosomal stability in periwinkles exposed to PAHs and other contaminants; 

and Lowe et al. (2006) also saw a reduction in lysosomal membrane stability in 

periwinkles exposed to 2 µM fluoranthene for 5 days. Lysosomal membrane disruption 

may also result from the ability of PAHs, due to their lipophilicity, to penetrate and 

incorporate phenanthrene and fluoranthene into phospholipid membranes resulting in 

increased membrane lipid unsaturation and hydrophobicity (Nelson et al., 1990).  
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Furthermore, PAHs can be biotransformed in mussels by cytochromes P450 (a large 

family of proteins that biotransform exogenous and endogenous molecules) and 

hydroperoxides (Garcia Martinez, Livingstone, 1995; Lemaire et al., 1993). These 

hydroperoxides can catalyse PAH metabolism, forming cation radicals which can also 

bind to DNA and other macromolecules (Livingstone et al. 1990).  

 

Chlorpyrifos and malathion are both known to induce oxidative stress in molluscs, and 

this reaction was associated with lysosomal injury and autophagic dysfunction, 

particularly with chlorpyrifos treatment in mussels and periwinkles (Canesi et al., 2011; 

Khalil, 2015; Livingstone, 2003). Oxidative damage as a result of malathion exposure 

has been reported in the freshwater snail Stagnicola sp., including elevation of MDA 

(Martinez-Tabche et al., 2002). Periwinkles were not treated with malathion.  

 

Atrazine can induce oxidative stress in Pacific oysters (Crassostrea gigas), and some 

evidence for oxidative stress was observed in treated mussels (Table 2; Lee et al., 

2017). However, this was limited to increased protein carbonyls and lysosomal 

destabilisation; and there was no evidence for dysfunction of autophagy (Table 1). 

 

Copper accumulates in mussel lysosomes and probably exerts its toxicity by ROS attack 

on lysosomal membranes with subsequent reduction in membrane stability (Ringwood et 

al., 1998; Shepard & Bradley, 2000). However, in this study lysosomal stability did not 

prove to be more sensitive than induction of either lipofuscin, or protein carbonyls in 

either mussel or snails (Table 2). Elevated mussel lipofuscin and protein carbonyls, and 

reduced lysosomal membrane stability, were seen only in the 10 µM exposure. No 

elevated lipofuscin was seen in any periwinkle copper treatment (Table 2; Fig. 5). 

However increased protein carbonyl formation was detected in both the 0.1 µM and 1 

µM exposures; and lysosome stability was seen to decrease only in the 10 µM 

treatment. 

 

LAS, in common with other surfactants, has a strong affinity for sediments and it is thus 

postulated that filter feeders may have increased vulnerability to its toxic effects (Da Ros 

et al., 1995; Sanderson et al., 2006). However, LAS was only found to exert a free 

radical mediated toxic effect at the highest exposure concentration of 10 µM in this study 

(Fig. 1-4), suggesting that it is far less toxic than all the other compounds assessed in 
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the study, excepting atrazine. LAS probably exerts its toxic effect through the disruption 

of biological membranes via intercalation into the membrane bilayer. This can result in 

the solubilisation and substitution of the component proteins and lipids consequently 

disrupting membrane functions such as endocytosis and phagocytosis (Jackson et al. 

1977). These observations suggest that the reduction of lysosomal membrane stability 

seen within this study may also result from LAS intercalation as well as ROS activity, as 

shown by the elevation of protein carbonyls (Table 2; Fig. 4). However, the absence of 

any increase (or even reduction) of lipofuscin indicated that oxidative stress was 

probably limited to the 10 µM LAS treatment (Table 2; Fig. 1). 

 

In summary, the patterns of toxic cell pathological reactions were very similar between 

mussel and periwinkle as previously demonstrated (Moore, 1988; Moore et al., 1987a, 

b). However, the snails were generally more susceptible to the toxic effects of 

chlorpyrifos and copper, which agrees with previous work demonstrating the robustness 

of mussels (M. edulis), compared to the common limpet (Patella vulgata) and crab 

(Carcinus maenas), on exposure to copper (Brown et al. 2004); and also the mussel 

Amblema plicata, compared to the oyster Crassostrea virginica, following exposure to 

chlorpyrifos (Borthwick et al. 1981; Doran et al. 2001). The main difference between the 

two test species in this investigation was that evidence for fatty change and lipidosis was 

more pronounced in the snails (see Table 2; Fig. 5).  

 

Principal component analysis (PCA) is an effective method for integrating biomarker 

data for lysosomal pathology and oxidative stress into a “health status space”, reducing 

the multi-dimensionality of the problem to a simple two dimensional representation (Allen 

and Moore, 2004; Chatfield and Collins, 1980). PCA is commonly used as a cluster 

analysis tool and effectively captures the variability in a dataset in terms of principal 

components. Previously PCA has facilitated modelling the integrated responses of 

multiple biomarkers in the context of “health status space” (Allen and Moore, 2004; 

Moore et al., 2006a, Sforzini et al., 2015, 2017, 2018). These models have shown that 

there is a strong direct relationship between LMS, as an indicator of cellular health, and 

the first principal components for the combined biomarker responses (Fig. 6, 7 & 8; 

Table 4; Allen & Moore, 2004; Moore et al., 2006a; Sforzini et al., 2018). The other 

biomarkers (lipofuscin, lysosomal lipid & protein carbonyls) are inversely correlated with 

the first principal components (Table 4). 
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Previous PCA and cluster analysis, which does not integrate the various biomarkers in a 

functionally meaningful way, was previously employed as the first stage in developing 

numerical and network models for environmental impact on the health of sentinel 

animals such as mussels and earthworms (Allen & McVeigh, 2004; Allen & Moore, 2004; 

Moore et al., 2015; Sforzini et al., 2016, 2017, 2018). Network models particularly, 

encapsulate the cellular physiological processes that enable the construction of a logical 

functional framework through the interconnections between the biomarker data; and, 

such models have repeatedly demonstrated the importance and utility of the set of 

biomarkers used in this investigation (Figs. 6, 7 & 8). The main output from the network 

models is a measure of system complexity (connectance %) and this is very strongly 

correlated with the first principal components and lysosomal membrane stability (LMS) 

as measures of functional integrity. Consequently, in this investigation, the first principal 

component is considered to be an effective functionally integrated representative index 

of “health status” (Moore et al., 2006a, 2007b; Sforzini et al., 2015, 2017, 2018). 

 

A conceptual mechanistic model for stress reactions in molluscan hepatopancreatic 

digestive cells related to lysosomal functions autophagy has been developed to explain 

the findings from this investigation and the links between reactive oxygen species (ROS) 

generation, oxidative stress and autophagy (Fig. 9). The model also draws on previous 

studies (Moore et al., 2006a, 2007b; Shaw et al., 2011), including the effects of 

benz[a]pyrene on the mTOR (mechanistic target for rapamycin) cell signalling system 

(Sforzini et al., 2018). mTOR complex 1 (mTORC1) is one of the key controlling foci in 

the cellular regulatory network, where it regulates many aspects of cell growth. mTORC1 

specifically regulates lysosomal membrane stability (permeability), lipogenesis and 

endocytosis; while inhibition by nutrient stress or oxidative stress triggers augmented 

physiological lysosomal autophagy (Flinn & Backer, 2010; Han & Wang, 2018; Laplante 

& Sabatini, 2012; Moore et al., 2015; Tan & Miyamoto, 2016). The model describes the 

interactive relationships between ROS, oxidative stress, mTORC1 inhibition, 

endocytosis, augmented physiological autophagy, lysosomal membrane stability, 

lipogenesis, fatty change, lysosomal lipidosis, lipofuscin generation, lysosomal 

lipofuscinosis, dysfunctional autophagy and programmed cell death (PCD Types 1 & 2) 

and digestive gland tubule tissue atrophy (Lowe, 1988). The mechanistic links between 
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these various pathological reactions have been described previously using quantitative 

network models for mussels and periwinkles (Moore et al., 2015; Sforzini et al., 2018). 

 

Conclusions 

Despite the diverse array of chemicals (i.e., PAHs, organophosphate insecticides, 

herbicide, transition metal and surfactant) used within this investigation, all have 

demonstrated a common initial mechanism of toxicity in the two test species. Oxidative 

stress, assessed via products of damage, appears to be a useful non-specific 

measurement of cellular perturbation. Lysosomal and autophagic dysregulation involving 

fatty change and lipid accumulation within the lysosomes of digestive cells also appears 

to be a useful integrated indicator of general chemical-induced stress as confirmed by 

previous work (Moore 1988; Domouhtsidou et al. 2001; Sforzini et al., 2018).  

 

The toxic effects of the majority of compounds used within this study tended to be more 

prominent at the higher treatment concentrations (i.e., >1 µM), and so, perhaps less 

environmentally relevant. However, animals were only exposed for 7 days; and much, if 

not most, of aquatic pollutant toxicity is chronic in nature. Consequently, the detrimental 

impact of exposure to these contaminants, at even the lowest levels used within this 

investigation, is likely to increase in severity over time.  

 

The loss of normal and augmented autophagic function in the hepatopancreatic 

digestive cells, as a result of autophagic dysregulation, will have profound effects on the 

physiology of the mussels and periwinkles. The hepatopancreas or digestive gland is the 

major organ for digestion, assimilation of nutrients and storage of energy reserves (i,e. 

glycogen and lipids); and detoxication of toxic metals and organic xenobiotics (Moore et 

al., 2006a, 2007b). As such, its normal and physiologically augmented autophagic 

functions are essential for the wellbeing of the whole animal; and if these become 

dysfunctional then the health of the animal declines as demonstrated by the related 

decline in physiological scope for growth (Moore et al., 2006a).  

 

Failure of normal and physiologically augmented autophagic function as a pathological 

reaction to chemically induced stress appears to be a widespread phenomenon in many 

eukaryotic species, including molluscs, annelids and mammals, perhaps indicating that 

this type of reaction is generic. Evidence for the generic nature of this pathological 
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reaction, is supported by the observations from the present investigation and builds on 

previous studies (Cuervo, 2004, 2008). Dysfunctional autophagy is characteristic of a 

number of animal and human diseases, including neurodegenerative diseases, 

fibromyalgia, ocular pathologies, cardiovascular disease and obesity related conditions 

(Cajaraville et al., 1995; Chen et al., 2012; Colacurcio et al 2018; Cuervo, 2004; 

Domouhtsidou et al. 2001; Jiang & Mizushima, 2014; Moore et al., 2006a, 2007b; 

Namkoong et al., 2018; Nixon, 2013; Numan et al., 2015; Oezel et al., 2016; Sforzini et 

al., 2018; Yan et al., 2017). Some of these disease conditions have been linked to 

uptake of harmful nanoscale materials derived from road traffic (Bai et., 2016; Chen et 

al., 2016; Numan et al., 2015).  
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Figure Legends  

Fig. 1. Lipofuscin in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 1 µM 

and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; lipofuscin (absorbance). 

 

Fig. 2. Lysosomal membrane stability (LMS - based on N-acetyl-β-hexosaminidase 

latency) in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 1 µM and 

10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; LMS is shown in minutes. 

 

Fig. 3. Neutral lipids (triglycerides) in digestive gland of mussels (4.8 – 5.2 cm) exposed 

to 0.1 µM, 1 µM and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, 

malathion and phenanthrene for 7 days. The carrier or vehicle control (VC) solvent 

was DMSO. Data is presented as the mean ± 95 % CL; neutral lipids (absorbance). 

 

Fig. 4. Protein carbonyls in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 

1 µM and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; protein carbonyls (density). 

 

Fig. 5. Lipofuscin, lysosomal membrane stability (based on β-glucuronidase latency), 

lysosomal lipids and protein carbonyls in digestive gland of periwinkles (2 – 2.5 cm) 

exposed to 0.1 µM, 1 µM and 10 µM of chlorpyrifos, copper and phenanthrene for 7 

days. The carrier or vehicle control (VC) solvent was DMSO. Data is presented as 

the mean ± 95 % CL.  

 

Fig. 6. Combined principal component and cluster analysis (i.e., elliptoid boundaries 

based on Euclidean distance) for all of the test compounds, based on the data for the 

four biomarkers in mussels. Vectors for the individual biomarkers are shown; and the 

large arrow indicates increasing cellular pathology. Exposure times are noted in key 

as 0 or 7 (days). PC1 and PC2 captured 44.5% and 24.3% of the variation 

respectively. 
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Fig. 7. Individual principal component analysis and cluster analysis (i.e., elliptoid 

boundaries based on Euclidean distance) for each of the test compounds, based on 

the data for the four biomarkers in mussels. Vectors for the individual biomarkers are 

shown; and the large arrow indicates increasing cellular pathology. Exposure times 

are noted in key as 0 or 7 (days). 

 

Fig. 8. Combined principal component analysis and cluster analysis (i.e., elliptoid 

boundaries based on Euclidean distance) for all of the test compounds, based on the 

data for the four biomarkers in periwinkles. Vectors for the individual biomarkers are 

shown; and the large arrow indicates increasing cellular pathology. Exposure times 

are noted in key as 0 or 7 (days). PC1 and PC2 captured 54.8% and 22.4% of the 

variation respectively.  

 

Fig. 9. Conceptual mechanistic model for the role of oxidative stress in dysregulation of 

autophagy and heterophagy in hepatopancreatic digestive cells. Processes outlined 

in narrow red are considered to be potentially adverse; and those outlined in thick 

red constitute cell injury and programmed cell death (PCD). mTORC1 is the 

mechanistic target for rapamycin complex 1 – a key component of the cellular 

signalling system. Dotted arrows indicates generic process, although not yet 

confirmed in molluscs. 
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Table 1. Table of water (Day 0) and tissue chemistry for mussel and periwinkle following 7 days 
exposure treatments to contaminant chemical concentrations of 0.1 µM, 1 µM and 10 µM.  

 
Treatment  Mussel Periwinkle 

Water  
(µM/L) 

Tissue  
(µg/g dry 
weight) 

Water  
(µM/L) 

Tissue  
(µg/g dry 
weight) 

Atrazine  Control 0 - - - 

0.1µM 0.029468 - - - 

1 µM 0.45563 - - - 

10 µM 3.557744 - - - 

Chlorpyrifos  Control 0 - 0 - 

0.1 µM 0.018 - 0.002 - 

1 µM 0.068 - 0.056 - 

10 µM 0.685 - 0.621 - 

Copper  Control 0.004 0.77 0.005 1.55 

0.1 µM 0.043 0.89 0.068 1.8 

1 µM 0.41 2.85 0.57 4.67 

10 µM 8.2 2.8 9.83 4.2 

Fluoranthene  Control 0 0.3 - - 

0.1 µM 0.022 39.2 - - 

1 µM 0.810 833.6 - - 

10 µM 5.073 4273.9 - - 

LAS  Control 0.09 - - - 

0.1 µM 0.3261 - - - 

1 µM 0.8098 - - - 

10 µM 4.2055 - - - 

Malathion  Control 0 - - - 

0.1 µM 0.085 - - - 

1 µM 0.911 - - - 

10 µM 3.193 - - - 

Phenanthrene  Control - 8.69 0.001 0.02 

0.1 µM - 85.72 0.022 4.26 

1 µM - 870.53 0.184 86.52 

10 µM - 2061.13 1.297 605.68 

 

Water chemistry results are presented as µM/L. Tissue chemistry results are presented as µg/g 
dry weight. Chlorpyrifos, LAS and malathion cannot be quantified in tissue; L. littorea was not 
exposed to atrazine, fluoranthene, LAS or malathion. 
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Table 2. Summary of biomarker responses and the inferred cellular pathological reactions in 
mussel and periwinkle digestive cells. Mussels were exposed to atrazine, chlorpyrifos, 
copper, fluoranthene, LAS, malathion and phenanthrene, and periwinkles were exposed to 
chlorpyrifos, copper and phenanthrene at concentrations of 0.1 µM, 1 µM and 10 µM for 7 
days.  

 
Treatment  Lysosomal

lipofuscin 
Lysosomal 
stability 

Lysosomal 
lipids              

Protein 
carbonyls  

Oxidative 
stress 

Dysfunctional 
autophagy 

Atrazine         

0.1 µM       

1 µM  � � � ����  

10 µM  � � � ����  

Chlorpyrifos        

0.1 µM  �� ��   � ����

1 µM    � �� ��    �    � � ����

10 µM �� �� �� �� � ���� � ����

Copper        

0.1 µM   ��    �   

1 µM      � ��   

10 µM � ��    � �� � ���� � ����

Fluoranthene         

0.1 µM �    ?  

1 µM � � � � ���� ���� 

10 µM � �  � ���� ���� 

LAS        

0.1 µM    � ?  

1 µM    � ?  

10 µM � � � � ���� ���� 

Malathion        

0.1 µM �    ?  

1 µM  � �    

10 µM � � � � ���� ���� 

Phenanthrene         

0.1 µM ��     ? ?  

1 µM �� ��    �    � � ���� � ����

10 µM �� ��    � �� � ���� � ����

 
� & � represent significant (p ≤ 0.05) increases and decreases in mussels; and � & � represent 
significant (p ≤ 0.05) increases and decreases in periwinkles, from the day 7 control (or carrier 
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control, where applicable); ����  represents the presence of oxidative stress and dysfunctional -
autophagy in mussels; � - represents the presence of oxidative stress and dysfunctional 
autophagy in periwinkles; ? - represents possible mild oxidative stress in mussels; and ? - 
represents possible mild oxidative stress in periwinkles. 
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Table 3.  Correlations between biomarkers from regression matrices for fluoranthene, 

phenanthrene, chlorpyrifos and copper treatments in mussels. 
 
Biomarker LMS Lipofuscin Lipid 

Fluoranthene     

Lipofuscin -0.689***   

Lipid -0.406** 0.497***  

Protein carbonyls -0.567*** 0.382** 0.159 

Phenanthrene    

Lipofuscin -0.632***   

Lipid -0.254* 0.081  

Protein carbonyls -0.510*** 0.323** 0.237 

Chlorpyrifos    

Lipofuscin -0.286*   

Lipid -0.761*** 0.420***  

Protein carbonyls -0.421*** 0.289** 0.368 

Copper     

Lipofuscin -0.689***   

Lipid -0.406** 0.497***  

Protein carbonyls -0.567*** 0.382** 0.159 

 
Values are Pearson’s Coefficient of Correlation R.  *p < 0.05; **p < 0.01; ***p < 0.001; 58df. 
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Table 4.  Correlation coefficients for the first Principal Component derived from all 
treatments as a “measure of health status” versus the individual biomarkers for 
mussels and periwinkles. 

 

First Principal 
Component 

Lysosomal 
Membrane 
Stability 

Lipofuscin Lipid Protein 
Carbonyls 

PC 1 - Mussels 0.71*** -0.60*** -0.59*** -0.75*** 

PC 1 - Littorinids 0.79*** -0.64*** -0.79*** -0.75*** 

 
Values are Pearson’s Coefficient of Correlation R.  Mussels - n = 400; Periwinkles – n = 170; *** p 
≤ 0.001  
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Fig. 1. Lipofuscin in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 1 µM 

and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; lipofuscin (absorbance). 
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Fig. 2. Lysosomal membrane stability (LMS - based on N-acetyl-β-hexosaminidase 

latency) in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 1 µM and 

10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; LMS is shown in minutes. 
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Fig. 3. Neutral lipids in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 1 

µM and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; neutral lipids (absorbance). 
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Fig. 4. Protein carbonyls in digestive gland of mussels (4.8 – 5.2 cm) exposed to 0.1 µM, 

1 µM and 10 µM of atrazine, chlorpyrifos, copper, fluoranthene, LAS, malathion and 

phenanthrene for 7 days. The carrier or vehicle control (VC) solvent was DMSO. 

Data is presented as the mean ± 95 % CL; protein carbonyls (density). 
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Fig. 5. Lipofuscin, lysosomal membrane stability (based on β-glucuronidase latency), 

lysosomal lipids and protein carbonyls in digestive gland of periwinkles (2 – 2.5 cm) 

exposed to 0.1 µM, 1 µM and 10 µM of chlorpyrifos, copper and phenanthrene for 7 

days. The carrier or vehicle control (VC) solvent was DMSO. Data is presented as 

the mean ± 95 % CL. 
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Fig. 6. Combined principal component and cluster analysis (i.e., elliptoid boundaries 

based on Euclidean distance) for all of the test compounds, based on the data for the 

four biomarkers in mussels. Vectors for the individual biomarkers are shown; and the 

large arrow indicates increasing cellular pathology. PC1 and PC2 captured 44.5% 

and 24.3% of the variation respectively. 
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Fig. 7. Individual principal component and cluster analysis (i.e., elliptoid boundaries 

based on Euclidean distance) for each of the test compounds, based on the data for 

the four biomarkers in mussels. Vectors for the individual biomarkers are shown; and 

the large arrow indicates increasing cellular pathology. 
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Fig. 8. Combined principal component and cluster analysis (i.e., elliptoid boundaries 

based on Euclidean distance) for all of the test compounds, based on the data for the 

four biomarkers in periwinkles. Vectors for the individual biomarkers are shown; and 

the large arrow indicates increasing cellular pathology. PC1 and PC2 captured 

54.8% and 22.4% of the variation respectively.  

  



 39

 

Fig. 9. Conceptual mechanistic model for the role of oxidative stress in dysregulation of 

autophagy and heterophagy (endocytosis of food) in hepatopancreatic digestive 

cells. Processes outlined in narrow red are considered to be potentially adverse; and 

those outlined in heavy red constitute cell injury and programmed cell death (PCD). 

mTORC1 is the mechanistic target for rapamycin complex 1 – a key component of 

the cellular signalling system. ROS – reactive oxygen species; dotted arrows indicate 

a generic process, although not yet confirmed in molluscs. 

 

 
 



Highlights:  

Failure of normal and physiologically augmented autophagic function as a pathological 

reaction to chemically induced stress appears to be a widespread phenomenon in many 

eukaryotic species, including molluscs, annelids and mammals, perhaps indicating that this 

type of reaction is generic. Evidence for the generic nature of this pathological reaction is 

supported by the observations from the present investigation and builds on previous studies. 

Dysfunctional autophagy is characteristic of a number of animal and human diseases, 

including neurodegenerative diseases, fibromyalgia, ocular pathologies, cardiovascular 

disease and obesity related conditions. Some of these disease conditions have been linked 

to uptake of harmful nanoscale materials derived from road traffic.  
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