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Abstract 17 

The problem of effective assessment of risk posed by complex mixtures of toxic chemicals in 18 

the environment is a major challenge for government regulators and industry. The biological 19 

effect of the individual contaminants, where these are known, can be measured; but the 20 

problem lies in relating toxicity to the multiple constituents of contaminant cocktails. The 21 

objective of this study was to test the hypothesis that diverse contaminant mixtures may 22 

cause a greater toxicity than the sum of their individual parts, due to synergistic interactions 23 

between contaminants with different intracellular targets. Lysosomal membrane stability in 24 

hemocytes from marine mussels was used for in vitro toxicity tests; and was coupled with 25 

analysis using the isobole method and a linear additive statistical model. The findings from 26 

both methods have shown significant emergent synergistic interactions between 27 

environmentally relevant chemicals (i.e., polycyclic aromatic hydrocarbons, pesticides, 28 

biocides and a surfactant) when exposed to isolated hemocytes as a mixture of 3 & 7 29 

constituents. The results support the complexity-based hypothesis that emergent toxicity 30 

occurs with increasing contaminant diversity, and raises questions about the validity of 31 

estimating toxicity of contaminant mixtures based on the additive toxicity of single 32 

components. Further experimentation is required to investigate the potential for interactive 33 

effects in mixtures with more constituents (e.g., 50 –100) at more environmentally realistic 34 

concentrations in order to test other regions of the model, namely, very low concentrations 35 

and high diversity. Estimated toxicant diversity coupled with tests for lysosomal damage may 36 

provide a potential tool for determining the toxicity of estuarine sediments, dredge spoil or 37 

contaminated soil.  38 

 39 

Two line capsule of paper: 40 
Synergistic interactions have been observed in mixtures of toxic chemicals and relatively non-41 
toxic chemicals increase the toxicity of the mixture. Toxicity increases with chemical diversity. 42 
 43 
Key words: complex pollutant mixtures; effect isobole; molluscan hemocytes; lysosomal membrane 44 
stability; neutral red retention test; synergistic interactions 45 
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Introduction 49 

In the past, the problem of chemical contamination in the environment has generally been 50 

addressed in terms of chemical characterisation of micropollutants such as polycyclic 51 

aromatic hydrocarbons, organochlorines, pesticides (Cassee et al., 1998; European 52 

Commission, 2011; LeBlanc & Olmstead, 2004; Readman, 1996; Readman et al., 1986, 53 

1992a & b, 1993a & b; Smith et al., 2013; Tolosa & Readman, 1996; Tolosa et al., 1996, 54 

1997).  However, chemical analysis only provides limited windows into a very complex 55 

mixture often believed to contain anything from 1000 to >100,000 compounds.  Such 56 

analyses are very expensive and provide no direct information on harmful effects.  However, 57 

effective measurement of direct toxicity in situ is now possible and has been applied 58 

increasingly to earthworms, fish and shellfish (Sforzini et al., 2015; Koehler et al., 1992; 59 

Lowe et al., 1992; Moore, 1988).  The major difficulty has been to relate toxicity in the real 60 

environment to the chemicals believed to be present in soils, sediments, effluents and 61 

dredge spoils. At present Toxicity Identification and Evaluation (TIE) method probably offers 62 

the best option (Mount & Anderson-Carnahan, 1988). First introduced by the US 63 

Environmental Protection Agency, TIE uses various procedures to fractionate the toxins 64 

within a sample. Bioassays and high level fractionation are used to determine causative 65 

agents and quantitative high resolution GC–MS or LC–MS analysis is then used to 66 

investigate the fractions producing the greatest toxicity. However, in many environmental 67 

situations there is limited knowledge of which toxic chemicals are actually present, as well as 68 

their physical chemical speciation and bioavailability, and this can impose a level of 69 

uncertainty on attempts to predict the toxic effects on the biota and potential human health 70 

impact (e.g., through consumption of seafoods).  71 

  72 

Assessing the harmful impact of mixtures in the environment and food is a major concern to 73 

regulators (McCarty & Borgert, 2006; Bringholf et al., 2007; Cedergreen, 2014; Kienzler et 74 

al., 2016; Kortenkamp et al., 2009; Sarigiannis & Hansen, 2012; Tallarida, 2012, 2016; Tang 75 

et al., 2014). Attempts have been made to relate measured harmful endpoints (e.g., 76 

pathology, mortality) to data on the toxicity of individual constituents of the mixture (Doi, 77 

1994).  However, success has been limited in this respect and the hypothesis that the 78 

“toxicity of a complex mixture is simply the summation of the toxicity of its individual 79 

constituents” is now treated with some scepticism, since in this model there is no accounting 80 

for emergent interactive effects (Sahai, 1997; Fig. 1).  For instance, there are numerous 81 

instances of synergistic interactions, even in simple mixtures, of drugs used in medical 82 

therapeutics (Di Dodato & Sharom, 1997; Kanazawa et al., 1997; Piras, et al., 1997; 83 

Tallarida, 2012; Valenti et al., 1997).  There is also evidence for this type of emergent effect 84 



in estrogenic effect of mixed pollutants (Ashby et al., 1996; Kortenkamp & Altenburger, 85 

1998), and in the synergistic interactive effects of non-toxic sucrose polyester, a zero-calorie 86 

cooking food additive and the polycyclic aromatic hydrocarbon anthracene (Moore et al., 87 

1997).  88 

 89 

Nevertheless, confounding factors include the lack of information about which chemicals are 90 

actually present as mentioned above, as well as their concentrations and toxicities (Smith et 91 

al., 2013).  Furthermore, in a complex mixture situation where the chemicals are often 92 

associated with particle surfaces or lipid-rich coatings of particles, the probability of catalytic 93 

reactions occurring to generate new compounds will be increased, since reactions such as 94 

oxidative changes will readily take place in a two dimensional environment (i.e., surfaces) 95 

where the chemicals are highly concentrated (Fig. 1; Li et al., 2017). 96 

 97 

In essence, this situation presents a major problem and challenge for ecotoxicology and 98 

environmental toxicology, and one that is also widely recognised in mammalian and human 99 

pharmacology and toxicology; and due of the enormous diversity of chemicals, it is very 100 

difficult to develop generalised rules that will determine the toxicity. Consequently, 101 

understanding the toxicity of chemically diverse mixtures is one of the major challenges for 102 

the future in toxicology (Cassee et al., 1998; Cedergreen, 2014; European Commission, 103 

2011; Kienzler et al., 2016; Kortenkamp et al., 2009; LeBlanc & Olmstead, 2004; 104 

Kortenkamp et al., 2009; McCarty & Borgert, 2006; Sarigiannis & Hansen, 2012; Smith et 105 

al., 2013; Tallarida, 2012, 2016).   106 

 107 

An alternative approach to the problem of predicting the toxicity of pollutant cocktails 108 

(complex mixtures) involves treating the probable harmful impact as supracritical cascades 109 

of self-propagating chemical interactions, leading to a burst of toxic molecular diversity 110 

which results in cell and tissue damage.  By trying to ascertain the laws that govern the 111 

emergence of toxic interactions in the complexity of contaminated environments (Kauffman, 112 

1993), we have to consider the types of chemical and biochemical interactions that can 113 

occur within a highly diverse molecular environment.  For instance, such a situation must 114 

have prevailed in the early prebiotic history of our planet and yet it was from this diverse 115 

molecular mixture, also containing many toxic chemicals that life originated. Living 116 

organisms are highly organised molecular and supramolecular aggregations where order 117 

and structure have emerged as a direct result of this very molecular diversity (i.e., self-118 

organised criticality), but in which, destructive toxic cascades (supracriticality, see Fig. 1) 119 

are prevented by protective homeostatic regulation (Bak & Chen, 1991; Kauffman, 1993).  120 

However, vestiges of the prebiotic condition are probably still represented in the universal 121 



use by cells of limited toxic cascades in intracellular signalling processes (e.g., free Ca2+, 122 

oxyradicals and nitric oxide; Yermolaieva et al., 2000).  123 

 124 

Consider then, an environment containing a diversity of toxic chemicals (e.g., a 125 

contaminated sediment or soil) and the consequences of this on the indigenous animals and 126 

plants.  At some critical diversity and contaminant concentration, the protective homeostatic 127 

processes within the cells will be overwhelmed and the cells will become supracritical (e.g., 128 

cascades of reactive free radicals) leading to cell injury and death.   Hence, toxic cascades 129 

will occur at a high concentration of total contaminants where the molecular diversity is very 130 

low.  What is not known is whether in a highly diverse toxic mixture, the total concentration 131 

can be very much lower (Fig. 1). Essentially, the question that is posed here is as follows: 132 

does the diversity of pollutant molecules and multiplicity of modes of action increase toxicity 133 

or are the effects generally additive?  134 

 135 

Consequently, the hypothesis being tested is that complex mixtures of contaminant 136 

chemicals will result in a cascade of toxicity (supracriticality) if the molecular diversity rises 137 

above a critical threshold (i.e., a phase transition).  Examples of analogous behaviour have 138 

been demonstrated in autocatalytic systems and proposed for the behaviour of bacterial 139 

ecosystems (Kauffman, 1993).  This hypothetical model is readily testable in relation to 140 

environmental toxicity (Fig. 1).   141 

 142 

If this hypothesis provides a satisfactory explanation for mixture toxicity, then the total 143 

concentration of pollutant chemicals in a mixture is such that it would be relatively non-toxic, 144 

or have low toxicity, for any single compound (i.e., subcritical behaviour). However, when 145 

the chemicals are combined in a mixture, they will interact in a complex manner with cellular 146 

processes to produce toxicity (i.e., supracritical behaviour), if their molecular diversity 147 

exceeds the threshold of the critical phase-transition boundary.  This would be an example 148 

of emergent behaviour. 149 

 150 

Unfortunately, additive effects at single test concentrations cannot be used reliably to test for 151 

interactive effects, and dose responses are a necessary requirement, as demonstrated by 152 

Berenbaum (1989) and Kortenkamp and Altenburger (1998).  Additionally, non-additive 153 

emergent interactions can readily be identified by using the method of effect isoboles, which 154 

is reliant on the concept of concentration additivity proposed by Loewe and Muischnek 155 

(1926), and used by Kortenkamp and Altenburger (1998) to demonstrate emergent 156 

estrogenic effects.  Tallarida (2012 & 2016) has recently reviewed the use of the isobole 157 

method in relation to the interactions of pharmaceuticals. 158 



 159 

The phagocytic blood cells (hemocytes) of marine mussels (Mytilus galloprovincialis), a 160 

common commercially and ecologically important animal, were used as the main 161 

experimental tool in this study.  Mussels are used globally as sentinels for envionmental 162 

monitoring and impact assessment, hence, they provide an appropriate model for this 163 

investigation (Cheung et al., 1998; Krishnakumar et al., 1994; Moore, 1988; Widdows et al., 164 

1992).  Their blood cells are immunocytes, and hence, are a key part of the cellular or innate 165 

immune system of the mussel, and there are many functional parallels with phagocytic 166 

mammalian white blood cells.  They are also known to be the target for chemical pollutant 167 

impact, which relates directly to important pathological consequences such as suppression 168 

of immune function (Galloway & Depledge, 2001; Moore et al., 2009).  In vitro tests with live 169 

cells can be performed rapidly and in large numbers (Loizou, 2016); and experimental 170 

exposures of molluscan blood cells (hemocytes) to mixtures will be tested for evidence of 171 

additive, synergistic and antagonistic interactions. Toxic cellular reactions induced by the 172 

various experimental treatments will be measured using a lysosomal membrane stability 173 

method as an indicator of cell injury involving damage to intracellular membranes (Lowe et 174 

al., 1992; Moore et al., 1996, 2009).  Lysosomal membrane stability was chosen as it is an 175 

integrated biomarker of cellular health/dysfunction, which is functionally related to protein 176 

turnover (degradation component), endocytosis, autophagy, oxidative stress and correlated 177 

with DNA damage caused by benzo[a]pyrene (Moore et al., 2006; Sforzini et al., 2018). 178 

 179 

Finally, the primary objective of this investigation will be to test the hypothetical model 180 

described in Figure 1 relating sublethal pollutant toxicity in complex mixtures to the 181 

molecular diversity of pollutant species; and the experimental results will be used to 182 

establish the subcritical-supracritical boundary for various concentrations and combinations 183 

of chemicals.  Environmental contaminants that will be tested include polycyclic aromatic 184 

hydrocarbons, pesticides, a biocide and a surfactant (Readman, 1996; Tolosa et al., 1996a 185 

& b). These chemicals have been chosen on the basis of their well documented toxicity and 186 

their continued presence in the environment in various parts of the world (Cassee et al., 187 

1998; European Commission, 2011; LeBlanc & Olmstead, 2004; Patel et al., 2016; 188 

Readman, 1996; Readman et al., 1986, 1992a & b, 1993a & b; Sapozhnikova et al., 2013; 189 

Smith et al., 2013; Tolosa & Readman, 1996; Tolosa et al., 1996, 1997). The concentrations 190 

of test chemicals used in this study were higher than would probably be encountered in the 191 

natural environment; however, the aim of the investigation was to demonstrate “proof of 192 

principle”. 193 

 194 

Materials and methods 195 



Animal husbandry 196 

Blue mussels (Mytilus galloprovincialis, 40-50 mm shell length) were collected from Freathy 197 

Beach (Whitsand Bay, Cornwall; Grid ref: SX 39390 52066); and held for 24 hours without 198 

food in a seawater aquarium system at 15 ± 1oC and 34 psu salinity with natural daylight 199 

prior to harvesting the blood cells (hemocytes).  200 

 201 

Lysosomal membrane stability (neutral red retention – NRR test) 202 

Lysosomal stability was assessed in the hemocytes or blood cells of mussels using neutral 203 

red as described by Lowe (1995) and Moore et al. (2008). Briefly, approximately 50 µl of 204 

haemolymph was removed from the posterior adductor muscle of mussels (n = 20 for each 205 

set of test concentrations) and added to 50 µl ml of physiological saline (0.02 M HEPES, 0.4 206 

M NaCl, 0.1 M MgSO4, 0.01 M KCl, 0.01 M CaCl2, pH 7.3). 40 µl of cell suspension was 207 

aliquoted onto a microscope slide and left in a dark moisture chamber at 15oC for 15 minutes 208 

to allow the cells to adhere, following which the cells were incubated in the test treatment 209 

solutions (see below).  A stock solution of 100 mM neutral red in DMSO (28.9 mg of neutral 210 

red in 1 ml of DMSO) was prepared and stored in a refrigerator prior to use.  However, the 211 

solution will solidify in the refrigerator and must be raised to room temperature for dilution in 212 

physiological saline to the working strength solution. The saline containing neutral red 213 

comprised 10 µl of stock neutral red in DMSO in 5ml of mussel physiological saline.  40 μl of 214 

neutral red saline solution was added to the slides and left for 15 min in a dark moist 215 

environmental chamber at 15oC to allow the neutral red to enter the cells and accumulate in 216 

the lysosomes. The slides were maintained under these conditions for the duration of the 217 

test, with slides only being removed briefly for microscopical examination before being 218 

returned. The cells were examined microscopically after 15, 30, 60, 90, 120, 150 and 180 219 

minutes. The test was terminated after 180 minutes, since the neutral red itself becomes a 220 

toxic xenobiotic stressor.  The end point of the test was when > 50% of the cells, based on a 221 

visual determination, exhibited lysosomal leakage of neutral red dye into the cytoplasm or 222 

showed significant abnormalities such as lysosomal enlargement (Lowe et al 1992, Moore et 223 

al., 2009). 224 

 225 

Experimental treatments 226 

The chemicals tested were phenanthrene, anthracene, lindane, malathion, irgarol-1051, cis-227 

permethrin and sodium dodecylbenzene sulphonate (LAS). Dimethyl sulphoxide (DMSO) 228 

was used as an initial solvent to prepare the 100 mM stock solutions for the test compounds, 229 

with the exception of LAS which was water miscible. Exposures were conducted at 10, 50, 230 

and 100 μM in physiological saline for 30 minutes at 15oC. Various test mixtures (Mix 2 – 231 

phenanthrene + anthracene; Mix 3 - phenanthrene + anthracene + LAS; and Mix 7 – all 232 



seven test compounds) were made up to each of these concentrations with all of the 233 

constituents being an equal proportion of the final dose. The controls were actually vehicle 234 

controls with the equivalent concentration of DMSO (0.1 % v/v) in physiological saline in all 235 

cases. DMSO at the concentration used is non-toxic to mussels; and the NRR values for the 236 

vehicle controls were within the normal range (Banni et al., 2017; Bellas et al., 2005, 2006). 237 

 238 

Microscope slides with attached hemocytes (see section above) were then shaken to 239 

remove the excess haemolymph and the slides placed into 50 ml Coplin jars containing the 240 

test chemicals dissolved in physiological saline. Slides were incubated in the Coplin jars, in 241 

the absence of light for a further 30 minutes, at a constant temperature of 15oC. Slides were 242 

then removed from the coplin jar, drained and 40μl of the neutral red working solution was 243 

added (see section above). All slides were coded to prevent operator bias and only decoded 244 

after the analyses of all samples were complete. The results were expressed as lysosomal 245 

toxicity (i.e., 100% - NRR [lysosomal membrane stability] as a % of control ± 95% CL). 246 

 247 

Isobole method 248 

50% toxicity values were determined for the individual compounds and the mixtures and the 249 

sum of concentration additivity for the 50% isobole calculated from the generic formula da/Da 250 

+ db/Db …… where da and db are the doses/concentrations of A and B in a mixture that 251 

produces a specified effect (50% toxicity) and Da and Db are the doses/concentrations of the 252 

single compounds, which on their own elicit the same effect as the mixture (Kortenkamp & 253 

Altenburger, 1998). 95% confidence bands were generated for the determination of the 254 

confidence limits (± 95%) for the 50% isoeffective concentrations and; and a pooled variance 255 

estimate was used to determine the estimated 95% confidence limits for the additivity 256 

concentrations (Cohen, 1988; Kortenkamp & Altenburger, 1998). 84% confidence limits were 257 

employed on the graphical plots rather than 95% confidence intervals, it then being true (for 258 

large n, as here) that non-overlapping intervals correspond to a significant difference in a 5% 259 

level test (Buzatto et al., 2015).  260 

 261 

Linear-additive statistical method 262 

A conventional statistical modelling approach was also employed, to examine robustness of 263 

the conclusions to choice of predictive model. Rather than the threshold-based approach of 264 

supracritical cascades this postulates a simple linear additive structure for the dose-265 

response models. Computations are performed on the raw NRR data, rather than as 266 

expressed by a percentage of controls, to preserve the statistical independence in formal 267 

inference from standard linear models and to allow visualisation of NRR levels under control 268 

conditions (higher NRR denotes lower toxicity). Observed NRR means and confidence 269 



intervals for the 9 mixture experiments (3 mixtures at 3 concentrations, n = 20 replicates 270 

each) are contrasted with predictions from an appropriate linear combination of NRR 271 

estimates from the separate regressions for each of the 7 compounds. Confidence intervals 272 

for these predictors were based on standard errors computed under the usual rules for 273 

variance of a linear combination of independent random variables. Formal testing of a 274 

difference between a predicted and observed mean relied on standard normality 275 

assumptions, justifiable here by the central limit theorem since the two statistics are each 276 

means over a large number of observations. For this model, under the null hypothesis of no 277 

effect of toxicant diversity, only of toxicant concentration, predicted and observed means will 278 

not differ. These test results are conveniently visualised on means plots by employing 84% 279 

rather than 95% confidence intervals, it then being true (for large n, as here) that non-280 

overlapping intervals correspond to a significant difference in a 5% level test (Buzatto et al., 281 

2015).  282 

 283 

Non-parametric Kruskal-Wallis tests were also used on the lysosomal toxicity data, to 284 

provide additional robustness to test conclusions.   285 

 286 

Chemicals 287 

All chemicals were obtained from Sigma-Aldrich. Anthracene and phenanthrene were > 99% 288 

pure; LAS (dodecylbenzene sulphonate) was Pharmaceutical Secondary Standard - 289 

Certified Reference Material; pesticides and herbicides were analytical standard grade; 290 

DMSO (> 99.9%); and neutral red powder (N4638) was graded as suitable for cell culture. 291 

All other reagents used were of ANALAR grade.  292 

 293 

Results 294 

Lysosomal toxicity 295 

Effects of the test chemicals and the 3 mixtures on % lysosomal toxicity (100% - NRR 296 

[lysosomal membrane stability] as a % of control ± 95% CL) were measured at three 297 

concentrations (10, 50 & 100 μM; Fig. 2). Lysosomal toxicity was also plotted as a series of 298 

dose responses for all of the test conditions (Fig. 2A - H), as these were required to 299 

determine the 50% effect isoboles. 300 

 301 

Dose/concentration responses for the individual test chemicals showed that LAS had the 302 

greatest effect on  lysosomal toxicity (Fig. 2C). Phenanthrene and anthracene also had a 303 

significant effect on the lysosomal toxicity (p < 0.05, n = 20; Kruskal-Wallis test; Fig. 2A, B). 304 

Malathion showed slight toxicity, but only at 10 μM; while lindane, irgarol-1051, and cis-305 



permethrin caused no significant effect on lysosomal retention (p > 0.05, n = 20; Kruskal-306 

Wallis test; Fig. 2D - G). Controls maintained high retention times throughout all the 307 

exposures and no significant differences could be found (p > 0.05; Kruskal-Wallis test). The 308 

mixtures of test compounds caused a significant change in lysosomal toxicity for the mixture 309 

of phenanthrene and anthracene (Mix 2) at 100 μM (p < 0.05, n = 20; Kruskal-Wallis test; 310 

Fig. 2 H). However, significant increases in lysosomal toxicity were observed at 10, 50 and 311 

100 μM for the mixture of phenanthrene, anthracene and LAS (Mix 3), as well as in the 312 

mixture of all 7 test chemicals (Mix 7; p < 0.05, n = 20; Kruskal-Wallis test; Fig. 2H). When 313 

the dose responses for the individual compounds were compared with the mixtures, the 314 

mixture with 7 chemicals (Mix 7) was the most toxic (Fig. 2H), and the mixture with 3 315 

components (Mix 3) was comparable to the dose response for LAS (Fig. 2C, H). 316 

 317 

Application of isobole method 318 

Isoeffective concentration values were determined for the individual compounds and the 319 

mixtures; and the sum of concentration additivity for the 50% isobole was calculated for each 320 

mixture using the generic formula described by Kortenkamp & Altenburger (1998) (Fig. 3). 321 

Anthracene did not quite achieve 50% lysosomal toxicity anthracene, and was extrapolated 322 

slightly beyond the 100 µM concentration (Fig. 2B). Some of the test compounds (i.e., 323 

malathion, cis-permethrin, irgarol 1051 and lindane) did not achieve 50% lysosomal toxicity, 324 

and also, were not significantly different from the control (Fig. 2D - G). Consequently, these 325 

compounds could not be included in the 50% concentration additivity calculations.  95% 326 

confidence bands were generated for the determination of the confidence limits (± 95%) for 327 

the 50% isoeffective concentrations; and a pooled variance estimate was used to determine 328 

the estimated 95% confidence limits for the additivity concentrations (Cohen, 1988; 329 

Kortenkamp & Altenburger, 1998).  330 

 331 

The isobole method demonstrated that there was an additive toxic effect with a mixture of 332 

phenanthrene and anthracene (Mix 2) at the 50% effect isobole (P < 0.05, n = 20; Fig. 3A, 333 

B). When LAS was added to phenanthrene and anthracene (Mix 3), there was a significant 334 

synergistic interactive effect for the observed isoeffective concentration at the 50% effect 335 

isobole (Fig. 3A, B; Kortenkamp and Altenburger, 1998). With a mixture of all seven 336 

compounds (Mix 7), there was a significant synergistic interaction for the observed 337 

isoeffective concentration at the 50 % effect isobole (P < 0.05, n = 20; Fig. 3A, B).  338 

 339 

Application of linear additive model 340 

The linear additive statistical model allows comparison of observed with predicted effects on 341 

lysosomal membrane stability in the absence of any effect of toxicant diversity (Fig. 5). Major 342 



declines in NRR (i.e., greater toxicity) were seen for Mixtures 3 & 7 that cannot be explained 343 

solely by toxicant concentration under this linear additive model (Fig. 4); and these findings 344 

were indicative of synergistic interactions (Fig. 3A, B). These results have to be treated with 345 

caution as the dose responses for phenanthrene, anthracene and LAS were not strictly 346 

linear. However, the results from the linear additive model are in very good agreement with 347 

the findings from the use if the isobole method. 348 

 349 

Modelling 350 

The enhanced toxic effects were evident with the most diverse toxic mixture (Mix 3 & 7), 351 

when the data for the mixtures were plotted as % lysosomal toxicity (100% – NRR as % of 352 

control) against the diversity (i.e., number of test compounds) of the toxic mixture (Fig. 5). 353 

Results shown in Figure 6 tentatively indicated that there may be a phase shift in relative 354 

toxicity with the test mixtures with 3 & 7 components. 355 

 356 

Finally, the lysosomal toxicity data was used to test the concentration & diversity model 357 

proposed in the hypothesis.  The results are presented in the log concentration versus log 358 

chemical diversity matrix shown in Figure 6 that indicates that the hypothesis being tested is 359 

probably supported by the data. These findings are in agreement with the results of the 50% 360 

effect isobole method, and the linear additive statistical model, that synergistic interactions 361 

are in fact occurring in the more complex mixtures. 362 

 363 

Discussion 364 

Living cells as the basic units of life operate below or near to the subcritical-supracritical 365 

boundary, sometimes referred to as “the edge of chaos” (Kaufmann, 1993; Fig. 1).  If cells 366 

were supracritical then the introduction of any foreign molecule (i.e., xenobiotic chemical) 367 

will probably unleash a potentially harmful and reactive molecular cascade (Kauffman, 368 

1993).  Such a reactive cascade will propagate, since each new molecule can potentially 369 

interact with another biological molecule, such as membrane lipids, proteins and DNA and 370 

potentially initiate a further cascade (i.e., a chain reaction).  Therefore, there is a high 371 

probability that many of these cascading toxic molecules will perturb the homeostatic 372 

regulation of cellular processes (i.e., sublethal toxicity) and lead to cell injury, pathology and 373 

cell death.  Essentially, supracritical conditions within cells will be lethally destructive.  374 

However, cells have evolved a number of protective processes in order to protect 375 

themselves.  These protective systems include sequestration within the interior 376 

microenvironment of a membrane-bound vesicle (e.g., the lysosome), membrane pumps to 377 

remove novel molecules from the cell (e.g., multidrug-resistance system - MDR), detoxifying 378 



enzymes to metabolise toxic molecules (e.g., cytochromes P-450 [CYP superfamily] and 379 

esterases) and antioxidant enzymes to protect against free radicals (e.g., superoxide 380 

dismutase, catalase and glutathione peroxidase), as well as scavenging molecules that bind 381 

to toxic reactive molecules (Minier & Moore, 1996a, b; Sies, 1997).  382 

 383 

Lysosomes are central to innate or cellular immune function, and normal turnover of cellular 384 

proteins and other biomolecules (Moore et al., 2004, 2006, 2007).  Lysosomes are well 385 

established targets for many environmental xenobiotic chemicals that are also known to 386 

accumulate in lysosomes (i.e., metal ions and organic chemicals with many modes of toxic 387 

action; Moore et al., 2004; Rashid et al., 1991). Furthermore, the lysosomal vacuolar system 388 

has an important cellular protective function and, when lysosomal storage capacity is 389 

overloaded, the lysosomes display characteristic low membrane stability reactions to toxic 390 

injury (Minier & Moore, 1996a, b; Moore, 1985, 1986, 1990; Moore et al., 1996, 2004, 2006, 391 

2007).   392 

 393 

Lysosomal integrity is an effective measure of integrated physiological function and, 394 

therefore, is more functionally relevant than many other biomarker tests that only measure a 395 

change in the level or function of a particular protein (Lowe et al., 1992; Moore et al., 2004, 396 

2006a; Regoli, 1998; Ringwood et al., 1992; Sforzini et al., 2015, 2017). The lysosomal 397 

system also has the propensity for accumulating many xenobiotic chemicals including 398 

polycyclic aromatic hydrocarbons (de Duve, 1974; Minier & Moore, 1996a, b; Moore et al., 399 

1996, 2004, 2006a; Rashid et al., 1991). Only some of the compounds tested were 400 

lysosomotropic: these were anthracene and phenanthrene (Moore et al., 2006). Of the other 401 

chemicals, LAS is a detergent (surfactant) and disrupts cell membranes, while lindane, cis-402 

permethrin and malathion are neurotoxic pesticides and irgarol 1051 is a herbicide (Patel et 403 

al., 2016; Sapozhnikova et al., 2013). The effects of the pesticides and irgarol 1051 have 404 

been tested in several species of mussel and found to have relatively low toxicity (Bellas, 405 

2006; Bringholf et al., 2007; Khessiba et al, 2005; Lehtonen & Leiniö, 2003). 406 

 407 

Four of the compounds tested in several species of mussel (i.e., malathion, lindane, cis-408 

permethrin and irgarol 1051) had either very low or else no lysosomal toxicity and this is 409 

supported by other studies (Bellas, 2006; Bringholf et al., 2007; Khessiba et al, 2005; 410 

Lehtonen & Leiniö, 2003; Fig. 2). It was, therefore, surprising that these relatively low toxicity 411 

chemicals, when combined with the two PAHs and LAS, apparently contributed to the 412 

enhanced lysosomal toxicity in the hemocytes (Smith et al., 2013; Figs. 2H, 3A). However, 413 

this type of effect has been observed previously in mice exposed to a mixture of estrogenic 414 



methoxychlor and non-estrogenic dieldrin (Ashby et al., 1997; Kortenkamp & Altenburger, 415 

1998; Smith et al., 2013). 416 

 417 

When the results from the isobole and linear additive method for interactions in the mixtures 418 

(Mix 2, Mix 3 & Mix 7) were applied to the concentration/diversity model, there was a clear 419 

demarcation between those test conditions showing evidence for a synergistic interaction 420 

and those with no interaction (Fig. 6). The 50% isoeffective concentrations for the three 421 

mixtures, with transposed axes from Figure 3B, were used to generate the subcritical-422 

supracritical boundary curve (Fig. 6). Consequently, the hypothesis is apparently supported 423 

by the data that increasing diversity in a mixture of contaminants contributes to emergent 424 

toxicity (Kauffman, 1993).  425 

 426 

There is some indication that a phase shift is occurring at the level of the mixture with 3 427 

compounds leading to emergent synergistic toxicity as indicated in Figure 5; and this is 428 

supported by the evidence for increased variance for the isoeffective concentration of 429 

Mixture 3 (Fig. 3A, B).  Although it is probable that in other combinations of chemical 430 

compounds, this type of phase transition will occur at a different level of chemical diversity; it 431 

is reasonable to argue that a phase transition will generally indicate that emergent behaviour 432 

is happening (Kauffman, 1993; Kortenkamp et al., 2009). Nevertheless, the consequences of 433 

synergy between contaminants in the natural environment may be greater than those 434 

observed in this investigation, under relatively simple conditions over a short time period. 435 

Hence, in more chronic conditions it is possible that the interaction between contaminants 436 

may be of much greater concern for animal health status (Doi, 1994). 437 

 438 

Ideally we would have wished to explore the effects of a larger number of combinations of 439 

these chemicals, however, this was not logistically possible within the scope of the 440 

investigation. Further experimentation is required for investigating the potential for interactive 441 

effects in mixtures with more constituents (e.g., 50–100).  Such investigation will provide 442 

data sets for testing regions of the current model with very low environmentally realistic 443 

concentrations and very high diversity (Fig. 6; Cedergreen, 2014). 444 

 445 

Conclusions 446 

The fact that the results support the complexity-based hypothesis that there is emergent 447 

toxicity with increasing contaminant diversity should perhaps urge a cautionary attitude to 448 

disposal of toxic mixtures until the hypothesis is disproved. However, if further support for 449 

the hypothesis is forthcoming, then serious questions arise as to the validity of estimating 450 

potential emergent toxicity of complex mixtures based on the additive toxicity of single 451 



components.  Regulation of discharges based on toxicity rather than chemical composition 452 

will probably provide a more practical solution to this problem, where the toxicity of the main 453 

components has been determined by bioassays or ecotoxicity tests (Cassee et al., 1998; 454 

Cedergreen, 2014; European Commission, 2011; Kienzler et al., 2016; Kortenkamp et al., 455 

2009; LeBlanc & Olmstead, 2004; McCarty & Borgert, 2006; Sarigiannis & Hansen, 2012; 456 

Smith et al., 2013; Tallarida, 2012, 2016; Tang et al., 2014). 457 
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 657 

Fig. 1. Toxicity as a cellular supracritical reaction based on complexity theory (Kauffman, 658 
1993).  Using logarithmic scales, the molecular diversity of pollutant chemical species 659 
is plotted against the total concentration of pollutants in a complex mixture.  A variety 660 
of modes of action is implicit in the diversity (see Kauffman, 1993). Idealised 661 
subcritical-supracritical boundaries are shown for alternative models where the effects 662 
are either synergistic, additive or antagonistic. 663 
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Fig. 2. The % lysosomal toxicity derived from the NRR time (as % of control) plotted against 669 
toxicant diversity (Mean ± 95% CL). Individual dose/concentration responses are 670 
shown in A-G with the dose responses of the 3 mixture groups shown in H. The 50% 671 
effect isoboles are shown as grey dashed lines. The dose response data for 672 
lysosomal toxicity was tested using the Kruskal-Wallis non-parametric test. 673 
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 677 
Fig. 3. A - Results of the 50% effect isobole method for identification of toxic lysosomal 678 

interactions. 50% isoeffective and additivity concentrations were determined for the 679 
three mixtures as explained in the Results section. The sums of concentration 680 
additivity (shaded boxes) were calculated from the generic formula da/Da + db/Db + 681 
etc…… where da and db are the doses/concentrations of A and B in a mixture that 682 
produces a specified effect (50% toxicity) and Da and Db are the doses/concentrations 683 
of the single compounds, which on their own elicit the same effect as the mixture 684 
(Kortenkamp & Altenburger, 1998). Additivity is indicated by a sum concentration 685 
additivity of 1.0, synergy by a sum concentration additivity of <1.0, and antagonism by 686 
a sum concentration additivity of >1.0.  Isoeffective concentrations determined from 687 
dose response graphs for individual compounds and mixtures based on the 50% 688 
lysosomal toxicity (100% – NRR value as % of control). B - The same data is also 689 
shown as a Log10 scale graphical plot for both axes, as these are used in Figure 6 with 690 
transposed axes. Significant differences were indicated by non-overlapping 84% CIs 691 
(i.e., employing 84% rather than 95% confidence intervals [Buzatto, et al., 2015], it 692 
then being true for large n [n = 20], that non-overlapping intervals correspond to a 693 
significant difference in a 5% level test). * - indicates significant difference (P < 0.05).   694 
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 698 

Fig. 4. Observed (Obs) NRR values for the three mixtures and controls at three 699 
concentrations, and predicted (Pred) estimates from separate components (linear 700 
additive model), plus 84% confidence intervals for both (non-overlapping intervals 701 
imply significant differences). An – anthracene, Ph – phenanthrene, LAS - 702 
dodecylbenzene sulphonate sulphonate, I – irgarol 1051, Pe – cis-permethrin, Li – 703 
lindane, M – malathion. Significant differences were indicated by non-overlapping 84% 704 
CIs (i.e., employing 84% rather than 95% confidence intervals [Buzatto, et al., 2015], it 705 
then being true for large n [n = 20], that non-overlapping intervals correspond to a 706 
significant difference in a 5% level test).  707 
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 712 
Fig. 5. Lysosomal toxicity (%) calculated from the NRR time (as % of control) plotted against 713 

mixture diversity (Mean ± 95% CL). The possible phase transition observed with the 714 
3-component mixture (Mix 3) is outlined by the shaded box. 715 
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 718 

Fig. 6. Evidence for synergistic toxicity as a consequence of increasing diversity of harmful 719 
chemicals. Test matrix (circular symbols) for chemical molar concentrations versus 720 
chemical diversity (log10 scales) with the % lysosomal toxicity (shaded boxes) shown 721 
for the corresponding treatment. The conjectured curve for the subcriticality 722 
/supracriticality boundary (broad grey line; see Figure 1) employs the 50% 723 
isoeffective concentrations (open grey diamond shapes) for the 3 mixtures 724 
(transposed from Fig. 3B; Kortenkamp & Altenburger, 1998). The 50% additivity 725 
concentrations are shown as a dashed line (transposed axes from Fig. 3B). 726 

 727 
 728 
 729 


