62 research outputs found

    A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios

    Full text link
    [EN] Ecuador is worldwide considered as one of the main natural flower producers and exporters ¿being roses the most salient ones. Such a fact has naturally led the emergence of small and medium sized companies devoted to the production of quality roses in the Ecuadorian highlands, which intrinsically entails resource usage optimization. One of the first steps towards optimizing the use of resources is to forecast demand, since it enables a fair perspective of the future, in such a manner that the in-advance raw materials supply can be previewed against eventualities, resources usage can be properly planned, as well as the misuse can be avoided. Within this approach, the problem of forecasting the supply of roses was solved into two phases: the first phase consists of the macro-forecast of the total amount to be exported by the Ecuadorian flower sector by the year 2020, using multi-layer neural networks. In the second phase, the monthly demand for the main rose varieties offered by the study company was micro-forecasted by testing seven models. In addition, a Bayesian network model is designed, which takes into consideration macroeconomic aspects, the level of employability in Ecuador and weather-related aspects. This Bayesian network provided satisfactory results without the need for a large amount of historical data and at a low-computational cost.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS ¿Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems¿ (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015. In addition, the authors are greatly grateful by the support given by the SDAS Research Group (www.sdas-group.com)Herrera-Granda, ID.; Lorente-Leyva, LL.; Peluffo-Ordóñez, DH.; Alemany Díaz, MDM. (2021). A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios. Lecture Notes in Computer Science. 12566:245-258. https://doi.org/10.1007/978-3-030-64580-9_21S24525812566Asociación de Productores y Exportadores de Flores: Inicio – Expoflores. https://expoflores.com/Palacios, J., Rosero, D.: Análisis de las condiciones climáticas registradas en el Ecuador continental en el año 2013 y su impacto en el sector agrícola. Estud. e Investig. meteorológicas. Ina. Inst. Nac. Meteorol. e Hidrol. Ecuador, 28, p. (2014)Hidalgo-Proaño, M.: Variabilidad climática interanual sobre el Ecuador asociada a ENOS. CienciAmérica 6, 42–47 (2017)Ritchie, J.W., Abawi, G.Y., Dutta, S.C., Harris, T.R., Bange, M.: Risk management strategies using seasonal climate forecasting in irrigated cotton production: a tale of stochastic dominance. Aust. J. Agric. Resour. Econ. 48, 65–93 (2004). https://doi.org/10.1111/j.1467-8489.2004.t01-1-00230.xLetson, D., Podesta, G.P., Messina, C.D., Ferreyra, R.A.: The uncertain value of perfect ENSO phase forecasts: Stochastic agricultural prices and intra-phase climatic variations. Clim. Change 69, 163–196 (2005). https://doi.org/10.1007/s10584-005-1814-9Weber, E.U., Laciana, C., Bert, F., Letson, D.: Agricultural decision making in the argentine Pampas: Modeling the interaction between uncertain and complex environments and heterogeneous and complex decision makers (2008)Loy, J.-P., Pieniadz, A.: Optimal grain marketing revisited a german and polish perspective. Outlook Agric. 38, 47–54 (2009). https://doi.org/10.5367/000000009787762761Wang, Q.J., Robertson, D.E., Haines, C.L.: A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development. WATER Resour. Res. 45 (2009). https://doi.org/10.1029/2006wr005419Keesman, K.J., Doeswijk, T.: uncertainty analysis of weather controlled systems (2010). https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960073961&doi=10.1007%2F978-3-642-03735-1_12&partnerID=40&md5=210525584472097e996a9f124f96fddbSchnepf, R.: U.S. livestock and poultry feed use and availability: background and emerging issues. In: Feed Market Dynamics and U.S. Livestock Implications. pp. 1–36. Nova Science Publishers, Inc., CRS, United States (2012)Medellín-Azuara, J., Howitt, R.E., MacEwan, D.J., Lund, J.R.: Economic impacts of climate-related changes to California agriculture. Clim. Change 109, 387–405 (2011). https://doi.org/10.1007/s10584-011-0314-3McCown, R.L., Carberry, P.S., Dalgliesh, N.P., Foale, M.A., Hochman, Z.: Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agric. Syst. 106, 33–45 (2012). https://doi.org/10.1016/j.agsy.2011.10.005Scott, S.L., Varian, H.R.: Predicting the present with bayesian structural time series. Available SSRN 2304426 (2013)Prudhomme, C., Shaffrey, L., Woollings, T., Jackson, C., Fowler, H., Anderson, B.: IMPETUS: Improving predictions of drought for user decision-making. International Conference on Drought: Research and Science-Policy Interfacing, 2015. pp. 273–278. CRC Press/Balkema, Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom (2015)Wiles, P., Enke, D.: A hybrid neuro-fuzzy model to forecast the Soybean complex. International Annual Conference of the American Society for Engineering Management 2015, ASEM 2015. pp. 1–5. American Society for Engineering Management, Missouri University of Science and Technology, Engineering Management and Systems Engineering Department, United States (2015)Hansen, B.G., Li, Y.: An analysis of past world market prices of feed and milk and predictions for the future. Agribusiness 33, 175–193 (2017). https://doi.org/10.1002/agr.21474Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A., Bedard, F.: Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 218, 74–84 (2016). https://doi.org/10.1016/j.agrformet.2015.11.003Chen, J., Yang, J., Zhao, J., Xu, F., Shen, Z., Zhang, L.: Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing 174, 1087–1100 (2016). https://doi.org/10.1016/j.neucom.2015.09.105Fodor, N., et al.: Integrating plant science and crop modeling: assessment of the impact of climate change on soybean and maize production. Plant Cell Physiol. 58, 1833–1847 (2017). https://doi.org/10.1093/pcp/pcx141Chapman, R., et al.: Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: a proof of concept analysis. Comput. Electron. Agric. 151, 338–348 (2018). https://doi.org/10.1016/j.compag.2018.06.006Lara-Estrada, L., Rasche, L., Sucar, L.E., Schneider, U.A.: Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks. LAND. 7 (2018). https://doi.org/10.3390/land7010004Abdelaal, H.S.A., Thilmany, D.: Grains production prospects and long run food security in Egypt. Sustain. 11 (2019). https://doi.org/10.3390/su11164457Kusunose, Y., Ma, L., Van Sanford, D.: User responses to imperfect forecasts: findings from an experiment with Kentucky wheat farmers. Weather. Clim. Soc. 11, 791–808 (2019). https://doi.org/10.1175/wcas-d-18-0135.1Kadigi, I.L., et al.: Forecasting yields, prices and net returns for main cereal crops in Tanzania as probability distributions: a multivariate empirical (MVE) approach. Agric. Syst. 180 (2020). https://doi.org/10.1016/j.agsy.2019.102693McGrath, G., Rao, P.S.C., Mellander, P.-E., Kennedy, I., Rose, M., van Zwieten, L.: Real-time forecasting of pesticide concentrations in soil. Sci. Total Environ. 663, 709–717 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.401Yang, B., Xie, L.: Bayesian network modelling for “direct farm” mode based agricultural supply chain risk. Ekoloji 28, 2361–2368 (2019)Zaporozhtseva, L.A., Sabetova, T. V, Yu Fedulova, I.: Assessment of the uncertainty factors in computer modelling of an agricultural company operation. International Conference on Information Technologies in Business and Industries, ITBI 2019. Institute of Physics Publishing, Voronezh State Agrarian University, Michurina Str. 30, Voronezh, 394087, Russian Federation (2019)Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley (2015)Hanke, J., Wichern, D.: Business forecast. Pearson Educación (2010)Novagric: Invernaderos para Cultivo de Rosas. https://www.novagric.com/es/invernaderos-rosasWeather Spark: Clima promedio en Quito, Ecuador, durante todo el año - Weather Spark. https://es.weatherspark.com/y/20030/Clima-promedio-en-Quito-Ecuador-durante-todo-el-añoInstituto Nacional de Estadísticas y Censos-INEC: Encuesta Nacional de Empleo, Desempleo y subempleo-ENEMDU. https://www.ecuadorencifras.gob.ec/empleo-diciembre-2019/Central Bank of Ecuador: Central Bank of Ecuador. www.bce.fin.ecHyndman, R., Athnasopoulos, G.: Forecasting: Principles and Practice. OTexts, Australia (2018)Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Rojas, I., Joya, G.C.A. (eds.) International Work-Conference on Artificial Neural Networks, pp. 362–373. Springer, Canaria (2019

    Fertilization Strategies Based on Climate Information to Enhance Food Security Through Improved Dryland Cereals Production

    Get PDF
    Rainfall uncertainty and nutrient deficiency affect sorghum production in Sahel. This study aimed at (i) determining the responses (varieties*water*nitrogen) of various West-African sorghum (Sorghum bicolor L. Moench) varieties to the application of fertilizer (NPK and urea) at selected growing stages according to water regime (irrigated or not, different rainfall patterns) and (ii) simulating them to define alternative fertilization strategies. This chapter proposes alternative fertilization strategies in line with rainfall patterns. Split plot experiments with four replications were carried out in two locations (Senegal), with four improved sorghum varieties (Fadda, IS15401, Soumba and 621B). Treatments were T1, no fertilizer; T2 = 150 kg/ha of NPK (15-15-15) at emergence +50 kg/ha of urea (46%) at tillering +50 Kg/ha of urea at stem extension; T3 = half rate of T2 applied at the same stages; T4 = 150 kg/ha of NPK + 50 kg/ha of urea at stem extension +50 kg/ha of urea at heading, and T5 = half rate of T4 applied at the same stages. Plant height, leaf number, grain yield, and biomass were significantly affected by the timing and rate of fertilizers. Grain yield were affected by water*nitrogen and nitrogen*variety interactions. It varied from 2111 to 261 kg/ha at “Nioro du Rip” and from 1670 to 267 kg/ha at “Sinthiou Malème”. CERES-Sorghum model overestimated late fertilizer grain yields. To achieve acceptable grain yield, fertilizers application should be managed regarding weather

    Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Get PDF
    Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection

    Epitope mapping of avian influenza m2e protein: different species recognise various epitopes

    Get PDF
    Published: June 30, 2016A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development.Noor Haliza Hasan, Esmaeil Ebrahimie, Jagoda Ignjatovic, Simson Tarigan, Anne Peaston, Farhid Hemmatzade

    Progress in gene therapy for neurological disorders

    Get PDF
    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy

    The global significance of omitting soil erosion from soil organic carbon cycling schemes

    No full text
    Soil organic carbon (SOC) cycling schemes used in land surface models (LSMs) typically account only for the effects of net primary production and heterotrophic respiration1. To demonstrate the significance of omitting soil redistribution in SOC accounting, sequestration and emissions, we modified the SOC cycling scheme RothC (ref. 2) to include soil erosion. Net SOC fluxes with and without soil erosion for Australian long-term trial sites were established and estimates made across Australia and other global regions based on a validated relation with catchment-scale soil erosion. Assuming that soil erosion is omitted from previous estimates of net C flux, we found that SOC erosion is incorrectly attributed to respiration. On this basis, the Australian National Greenhouse Gas inventory overestimated the net C flux from cropland by up to 40% and the potential (100 year) C sink is overestimated by up to 17%. We estimated global terrestrial SOC erosion to be 0.3–1.0 Pg C yr−1 indicating an uncertainty of −18 to −27% globally and +35 to −82% regionally relative to the long-term (2000–2010) terrestrial C flux of several LSMs. Including soil erosion in LSMs should reduce uncertainty in SOC flux estimates3,4 with implications for CO2 emissions, mitigation and adaptation strategies and interpretations of trends and variability in global ecosystems5
    corecore