56 research outputs found

    CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Get PDF
    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals

    Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes

    Get PDF
    PurposeReduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient exercise intervention that improves aerobic capacity and blood pressure in men with type 2 diabetes. However, the acute effects of REHIT on 24-h glycaemia have not been examined.Methods11 men with type 2 diabetes (mean ± SD: age, 52 ± 6 years; BMI, 29.7 ± 3.1 kg/m2; HbA1c, 7.0 ± 0.8%) participated in a randomised, four-trial crossover study, with continual interstitial glucose measurements captured during a 24-h dietary-standardised period following either (1) no exercise (CON); (2) 30 min of continuous exercise (MICT); (3) 10 × 1 min at ~ 90 HRmax (HIIT; time commitment, ~ 25 min); and (4) 2 × 20 s ‘all-out’ sprints (REHIT; time commitment, 10 min).ResultsCompared to CON, mean 24-h glucose was lower following REHIT (mean ± 95%CI: − 0.58 ± 0.41 mmol/L, p = 0.008, d = 0.55) and tended to be lower with MICT (− 0.37 ± 0.41 mmol/L, p = 0.08, d = 0.35), but was not significantly altered following HIIT (− 0.37 ± 0.59 mmol/L, p = 0.31, d = 0.35). This seemed to be largely driven by a lower glycaemic response (area under the curve) to dinner following both REHIT and MICT (− 11%, p  0.9 for both) but not HIIT (− 4%, p = 0.22, d = 0.38). Time in hyperglycaemia appeared to be reduced with all three exercise conditions compared with CON (REHIT: − 112 ± 63 min, p = 0.002, d = 0.50; MICT: -115 ± 127 min, p = 0.08, d = 0.50; HIIT − 125 ± 122 min, p = 0.04, d = 0.54), whilst indices of glycaemic variability were not significantly altered.ConclusionREHIT may offer a genuinely time-efficient exercise option for improving 24-h glycaemia in men with type 2 diabetes and warrants further study

    Real-time visualization of heterotrimeric G protein Gq activation in living cells

    Get PDF
    Contains fulltext : 97296.pdf (publisher's version ) (Open Access)BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Ggamma2 subunit and a Galphaq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Ggamma2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity

    The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients

    Get PDF
    Genomics and proteomics will improve outcome prediction in cancer and have great potential to help in the discovery of unknown mechanisms of metastasis, ripe for therapeutic exploitation. Current methods of prognosis estimation rely on clinical data, anatomical staging and histopathological features. It is hoped that translational genomic and proteomic research will discriminate more accurately than is possible at present between patients with a good prognosis and those who carry a high risk of recurrence. Rational treatments, targeted to the specific molecular pathways of an individual’s high-risk tumor, are at the core of tailored therapy. The aim of targeted oncology is to select the right patient for the right drug at precisely the right point in their cancer journey. Optical proteomics uses advanced optical imaging technologies to quantify the activity states of and associations between signaling proteins by measuring energy transfer between fluorophores attached to specific proteins. Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) assays are suitable for use in cell line models of cancer, fresh human tissues and formalin-fixed paraffin-embedded tissue (FFPE). In animal models, dynamic deep tissue FLIM/FRET imaging of cancer cells in vivo is now also feasible. Analysis of protein expression and post-translational modifications such as phosphorylation and ubiquitination can be performed in cell lines and are remarkably efficiently in cancer tissue samples using tissue microarrays (TMAs). FRET assays can be performed to quantify protein-protein interactions within FFPE tissue, far beyond the spatial resolution conventionally associated with light or confocal laser microscopy. Multivariate optical parameters can be correlated with disease relapse for individual patients. FRET-FLIM assays allow rapid screening of target modifiers using high content drug screens. Specific protein-protein interactions conferring a poor prognosis identified by high content tissue screening will be perturbed with targeted therapeutics. Future targeted drugs will be identified using high content/throughput drug screens that are based on multivariate proteomic assays. Response to therapy at a molecular level can be monitored using these assays while the patient receives treatment: utilizing re-biopsy tumor tissue samples in the neoadjuvant setting or by examining surrogate tissues. These technologies will prove to be both prognostic of risk for individuals when applied to tumor tissue at first diagnosis and predictive of response to specifically selected targeted anticancer drugs. Advanced optical assays have great potential to be translated into real-life benefit for cancer patients

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes.

    No full text
    INTRODUCTION: Glycemic instability is a severely underestimated problem in type 2 diabetes treatment. Therapeutic targets should aim to reduce postprandial blood glucose excursions. Exercise prescription can effectively improve glucose homeostasis and reduce the risk of cardiovascular complications. AIM: To assess the impact of a single, isoenergetic bout of low- (LI) and high-intensity (HI) exercise on the prevalence of hyperglycemia throughout the subsequent 24-h postexercise period in longstanding type 2 diabetes patients. METHODS: Nine sedentary, male type 2 diabetes patients (age = 57 +/- 2 yr, body mass index = 29.0 +/- 1.0 kg x m(-2), Wmax = 2.2 +/- 0.2 W x kg(-1) body weight) were selected to participate in a randomized crossover study. Subjects performed an isoenergetic bout of endurance-type exercise for 60 min at 35% Wmax (LI) or 30 min at 70% Wmax (HI) or no exercise at all (NE). Thereafter, glycemic control was assessed during the subsequent 24-h postexercise period by continuous glucose monitoring under strict dietary standardization but otherwise free-living conditions. RESULTS: Average 24-h glucose concentrations were reduced after the LI exercise bout (7.8 +/- 0.9 mmol x L(-1)) when compared with the control experiment (9.4 +/- 0.8 mmol x L(-1); P < 0.05). The HI exercise bout did not significantly lower mean glucose concentrations (8.7 +/- 0.7 mmol x L(-1); P = 0.14). Hyperglycemia was prevalent for as much as 35% +/- 9% throughout the day (NE). A single bout of exercise reduced the prevalence of hyperglycemia by 50% +/- 4% (P < 0.05) and 19% +/- 9% (P = 0.13) in the LI and HI exercise experiments, respectively. CONCLUSIONS: A single bout of LI, as opposed to HI, exercise substantially reduces the prevalence of hyperglycemia throughout the subsequent 24-h postexercise period in longstanding type 2 diabetes patients

    Postprandial hyperglycemia is highly prevalent throughout the day in type 2 diabetes patients.

    No full text
    AIM: Although postprandial hyperglycemia is recognized as an important target in type 2 diabetes treatment, information on the prevalence of postprandial hyperglycemia throughout the day is limited. Therefore, we assessed the prevalence of hyperglycemia throughout the day in type 2 diabetes patients and healthy controls under standardized dietary, but otherwise free-living conditions. METHODS: 60 male type 2 diabetes patients (HbA(1c) 7.5±0.1% [58±1 mmol/mol]) and 24 age- and BMI-matched normal glucose tolerant controls were recruited to participate in a comparative study of daily glycemic control. During a 3-day experimental period, blood glucose concentrations throughout the day were assessed by continuous glucose monitoring. RESULTS: Type 2 diabetes patients experienced hyperglycemia (glucose concentrations >10 mmol/L) 38±4% of the day. Even diabetes patients with an HbA(1c) level below 7.0% (53 mmol/mol) experienced hyperglycemia for as much as 24±5% throughout the day. Hyperglycemia was negligible in the control group (3±1%). CONCLUSION: Hyperglycemia is highly prevalent throughout the day in type 2 diabetes patients, even in those patients with a HbA(1c) level well below 7.0% (53 mmol/mol). Standard medical care with prescription of oral blood glucose lowering medication does not provide ample protection against postprandial hyperglycemia

    Exercise and 24-h glycemic control: equal effects for all type 2 diabetes patients?

    No full text
    PURPOSE: We assessed the effect of a single bout of moderate-intensity exercise on subsequent 24-h glycemic control in 60 type 2 diabetes patients. Moreover, we examined whether individual responses to exercise were related to subjects' baseline characteristics, including age, body mass index, diabetes duration, exercise performance, medication, and HbA1c content. METHODS: Sixty type 2 diabetes patients (insulin-treated, n = 23) participated in a randomized crossover experiment. Patients were studied on two occasions for 3 d under strict dietary standardization but otherwise free-living conditions. Parameters of glycemic control (means [95% confidence interval]) were assessed by continuous glucose monitoring over the 24-h period after a single bout of moderate-intensity endurance-type exercise or no exercise at all (control). RESULTS: Type 2 diabetes patients experienced hyperglycemia (blood glucose >10 mmol·L) for as much as 8:16 h:min (6:44 to 9:48 h:min) per day. The prevalence of hyperglycemia was reduced by 31% to 5:38 h:min (3:17 to 7:00 h:min) over the 24-h period after the exercise bout (P < 0.001). Moreover, exercise lowered average blood glucose concentrations by 0.9 mmol·L (0.7 to 1.2) and reduced glycemic variability (P < 0.05). The response to exercise showed considerable variation between subjects and correlated positively with HbA1c levels (r = 0.38, P < 0.01). Nevertheless, even well-controlled patients with an HbA1c level below 7.0% (n = 28) achieved a 28% reduction in the daily prevalence hyperglycemia after exercise (P < 0.01). CONCLUSIONS: A single bout of moderate-intensity exercise substantially improves glycemic control throughout the subsequent day in insulin- and non-insulin-treated type 2 diabetes patients. Of all baseline characteristics, only subjects' HbA1c level is related to the magnitude of response to exercise. Nevertheless, the present study demonstrates that even well-controlled patients benefit considerably from the blood glucose-lowering properties of daily exercise
    corecore