73 research outputs found

    Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives

    Get PDF
    Background: Silkmoths and their relatives constitute the ecologically and taxonomically diverse superfamily Bombycoidea, which includes some of the most charismatic species of Lepidoptera. Despite displaying spectacular forms and diverse ecological traits, relatively little attention has been given to understanding their evolution and drivers of their diversity. To begin to address this problem, we created a new Bombycoidea-specific Anchored Hybrid Enrichment (AHE) probe set and sampled up to 571 loci for 117 taxa across all major lineages of the Bombycoidea, with a newly developed DNA extraction protocol that allows Lepidoptera specimens to be readily sequenced from pinned natural history collections. Results: The well-supported tree was overall consistent with prior morphological and molecular studies, although some taxa were misplaced. The bombycid Arotros Schaus was formally transferred to Apatelodidae. We identified important evolutionary patterns (e.g., morphology, biogeography, and differences in speciation and extinction), and our analysis of diversification rates highlights the stark increases that exist within the Sphingidae (hawkmoths) and Saturniidae (wild silkmoths). Conclusions: Our study establishes a backbone for future evolutionary, comparative, and taxonomic studies of Bombycoidea. We postulate that the rate shifts identified are due to the well-documented bat-moth “arms race”. Our research highlights the flexibility of AHE to generate genomic data from a wide range of museum specimens, both age and preservation method, and will allow researchers to tap into the wealth of biological data residing in natural history collections around the globe.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.NHM Repositor

    Redefining the "carrier" state for foot-and-mouth disease from the dynamics of virus persistence in endemically affected cattle populations

    Get PDF
    The foot-and-mouth disease virus (FMDV) “carrier” state was defined by van Bekkum in 1959. It was based on the recovery of infectious virus 28 days or more post infection and has been a useful construct for experimental studies. Using historic data from 1,107 cattle, collected as part of a population based study of endemic FMD in 2000, we developed a mixed effects logistic regression model to predict the probability of recovering viable FMDV by probang and culture, conditional on the animal’s age and time since last reported outbreak. We constructed a second set of models to predict the probability of an animal being probang positive given its antibody response in three common non-structural protein (NSP) ELISAs and its age. We argue that, in natural ecological settings, the current definition of a ”carrier” fails to capture the dynamics of either persistence of the virus (as measured by recovery using probangs) or the uncertainty in transmission from such animals that the term implies. In these respects it is not particularly useful. We therefore propose the first predictive statistical models for identifying persistently infected cattle in an endemic setting that captures some of the dynamics of the probability of persistence. Furthermore, we provide a set of predictive tools to use alongside NSP ELISAs to help target persistently infected cattle

    Spondarthritis in the Triassic

    Get PDF
    Background: The evidence of several forms of arthritis has been well documented in the fossil record. However, for pre-Cenozoic vertebrates, especially regarding reptiles, this record is rather scarce. In this work we present a case report of spondarthritis found in a vertebral series that belonged to a carnivorous archosaurian reptile from the Lower Triassic (,245 million years old) of the South African Karoo. Methodology/Principal Findings: Neutron tomography confirmed macroscopic data, revealing the ossification of the entire intervertebral disc space (both annulus fibrosus and nucleus pulposus), which supports the diagnosis of spondarthritis. Conclusions/Significance: The presence of spondarthritis in the new specimen represents by far the earliest evidence of any form of arthritis in the fossil record. The present find is nearly 100 million years older than the previous oldest report of this pathology, based on a Late Jurassic dinosaur. Spondarthritis may have indirectly contributed to the death of the anima

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    Plastic and Heritable Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common Garden Experiments

    Get PDF
    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal

    Assessing the Value of DNA Barcodes and Other Priority Gene Regions for Molecular Phylogenetics of Lepidoptera

    Get PDF
    BACKGROUND: Despite apparently abundant amounts of observable variation and species diversity, the order Lepidoptera exhibits a morphological homogeneity that has provided only a limited number of taxonomic characters and led to widespread use of nucleotides for inferring relationships. This study aims to characterize and develop methods to quantify the value of priority gene regions designated for Lepidoptera molecular systematics. In particular, I assess how the DNA barcode segment of the mitochondrial COI gene performs across a broad temporal range given its number one position of priority, most sequenced status, and the conflicting opinions on its phylogenetic performance. METHODOLOGY/PRINCIPAL FINDINGS: Gene regions commonly sequenced for lepidoptera phylogenetics were scored using multiple measures across three categories: practicality, which includes universality of primers and sequence quality; phylogenetic utility; and phylogenetic signal. I found that alternative measures within a category often appeared correlated, but high scores in one category did not necessarily translate into high scores in another. The DNA barcode was easier to sequence than other genes, and had high scores for utility but low signal above the genus level. CONCLUSIONS/SIGNIFICANCE: Given limited financial resources and time constraints, careful selection of gene regions for molecular phylogenetics is crucial to avoid wasted effort producing partially informative data. This study introduces an approach to assessing the value of gene regions prior to the initiation of new studies and presents empirical results to help guide future selections

    Euclid preparation: XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration

    Get PDF
    The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R~450 for its blue and red grisms that collectively cover the 0.93-1.89 μm range. NISP will obtain spectroscopic redshifts for 3 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 A to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 μm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80- 1.90 μm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 A in the optical and 0.3 A in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available

    Participation in Corporate Governance

    Full text link
    corecore