64 research outputs found

    Role of arginase in killing of schistosomula of schistosoma mansoni

    Get PDF
    Nonspecific resistance to the multicellular organism Schistosoma mansoni can be induced in mice by several infectious agents. We utilized the observed genetic restriction of such acquired resistance to study the mediators of killing of the larval stage of S. mansoni in vitro. Adherent peritoneal cell monolayers from Corynebacterium parvum-treated C57BL/6J but not from C. parvum-treated BALB/cJ mice killed an increased proportion of schistosomula in 24 h. Activated macrophages (Mφ) from both strains exhibited enhanced H(2)0(2) production after incubation with the parasites or phorbol myristate acetate. Thus H(2)0(2) production was not associated with schistosomula killing. Moreover, schistosomula killing was unaffected by catalase or superoxide dismutase. In contrast, activated C57BL/6J (but not BALB/cJ) Mφ released fourfold more arginase into supernates than control Mφ. Schistosomula killing by these Mφ correlated with arginase content of the supernates, was exaggerated in arginine-poor medium, and could be blocked by the addition of arginine. Exogenous bovine arginase added to Fischer's medium without macrophages produced comparable parasite mortality. Our data suggest that arginase is a critical mediator of in vitro killing of this multicellular organism by activated macrophages

    Understanding heterogeneities in mosquito-bite exposure and infection distributions for the elimination of lymphatic filariasis

    Get PDF
    It is well known that individuals in the same community can be exposed to a highly variable number of mosquito bites. This heterogeneity in bite exposure has consequences for the control of vector-borne diseases because a few people may be contributing significantly to transmission. However, very few studies measure sources of heterogeneity in a way which is relevant to decision-making. We investigate the relationship between two classic measures of heterogeneity, spatial and individual, within the context of lymphatic filariasis, a parasitic mosquito-borne disease. Using infection and mosquito-bite data for five villages in Papua New Guinea, we measure biting characteristics to model what impact bed-nets have had on control of the disease. We combine this analysis with geospatial modelling to understand the spatial relationship between disease indicators and nightly mosquito bites. We found a weak association between biting and infection heterogeneity within villages. The introduction of bed-nets increased biting heterogeneity, but the reduction in mean biting more than compensated for this, by reducing prevalence closer to elimination thresholds. Nightly biting was explained by a spatial heterogeneity model, while parasite load was better explained by an individual heterogeneity model. Spatial and individual heterogeneity are qualitatively different with profoundly different policy implications

    Midgut Barrier Imparts Selective Resistance to Filarial Worm Infection in Culex pipiens pipiens

    Get PDF
    Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF) caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies of these worms reveal compromised motility and sharp bends in the body; and ultrastructurally the presence of many fluid or carbohydrate-filled vacuoles in the hypodermis, body wall, and nuclear column. Incubation of Brugia mf with Cx. p. pipiens midgut extracts produces similar internal damage phenotypes; indicating that the Cx. p. pipiens midgut factor(s) that damage mf in vivo are soluble and stable in physiological buffer, and inflict damage on mf in vitro

    Combined Spatial Prediction of Schistosomiasis and Soil-Transmitted Helminthiasis in Sierra Leone: A Tool for Integrated Disease Control

    Get PDF
    Two forms of schistosomiasis or bilharzia (intestinal and urogenital) exist in Sierra Leone. The main control strategy for this disease currently is through mass drug administration (MDA) according to the World Health Organization recommended anthelminthic chemotherapy guidelines, and others include snail control, behavior change, and safe water, sanitation and hygiene. Survey on distribution and prevalence of the disease is vital to the planning of MDA in each district. The distribution of intestinal schistosomiasis in the country has been reported previously. The current national survey showed that urogenital schistosomiasis has a specific focal distribution particularly in the central and eastern regions of the country, most prevalent in Bo (24.6%), Koinadugu (20.4%) and Kono (25.3%) districts. Using a simple probabilistic model, this map was combined with the previously reported maps on intestinal schistosomiasis and the combined schistosomiasis prevalence was estimated. The combined schistosomiasis map highlights the presence of high-risk communities in an extensive area in the northeastern half of the country, which provides a tool for planning the national MDA activities

    Quality of antimalarial drugs and antibiotics in Papua New Guinea: A survey of the health facility supply chain

    Get PDF
    Background: Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API) endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT). In Papua New Guinea (PNG), Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG.Methods and Findings: Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC). Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3) contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4%) primaquine, 3/70 (4.3%) amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions.Conclusions: This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and regulatory mechanisms. Measures to stop the availability of poor-quality medicines should include limiting procurement to WHO prequalified products and implementing routine quality testing

    Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Miltefosine, which is the first oral drug licensed for the treatment of leishmaniasis, was recently reported to be a promising lead compound for the synthesis of novel antischistosomal derivatives with potent activity <it>in vivo </it>against different developmental stages of <it>Schistosoma mansoni</it>. In this paper an <it>in vitro </it>study was carried out to investigate whether it has a biocidal activity against the aquatic stages of <it>Schistosoma mansoni </it>and its snail intermediate host, <it>Biomphalaria alexandrina </it>, thus being also a molluscicide. Additionally, to see whether miltefosine can have a broad spectrum antischistosomal activity, a similar <it>in vitro </it>study was carried out on the adult stage of <it>Schistosoma haematobium</it>, the second major human species, its larval stages and snail intermediate host, <it>Bulinus truncutes</it>. This was checked by scanning electron microscopy.</p> <p>Results</p> <p>Miltefosine proved to have <it>in vitro </it>ovicidal, schistolarvicidal and lethal activity on adult worms of both <it>Schistosoma </it>species and has considerable molluscicidal activity on their snail hosts. Scanning electron microscopy revealed several morphological changes on the different stages of the parasite and on the soft body of the snail, which further strengthens the current evidence of miltefosine's activity. This is the first report of mollusicidal activity of miltefosine and its <it>in vitro </it>schistosomicidal activity against <it>S.haematobium</it>.</p> <p>Conclusions</p> <p>This study highlights miltefosine not only as a potential promising lead compound for the synthesis of novel broad spectrum schistosomicidal derivatives, but also for molluscicidals.</p

    Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites

    Get PDF
    Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunizationβ€”a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naΓ―ve animals. Finally, persisting antigen was able to prime naΓ―ve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen

    Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases

    Get PDF
    The intraerythrocytic parasite Plasmodiumβ€”the causative agent of malariaβ€”produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1Ξ² (IL-1Ξ²). However, the mechanism regulating Hz recognition and IL-1Ξ² maturation has not been identified. Here, we show that Hz induces IL-1Ξ² production. Using knockout mice, we showed that Hz-induced IL-1Ξ² and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1Ξ² augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome
    • …
    corecore