107 research outputs found

    Seed bank dynamics in five Panamanian forests

    Get PDF

    Dormancy‐defense syndromes and tradeoffs between physical and chemical defenses in seeds of pioneer species

    Get PDF
    Seeds of tropical pioneer trees have chemical and physical characteristics that determine their capacity to persist in the soil seed bank. These traits allow seeds to survive in the soil despite diverse predators and pathogens, and to germinate and recruit even decades after dispersal. Defenses in seedlings and adult plants often are described in terms of tradeoffs between chemical and physical defense, but the interplay of defensive strategies has been evaluated only rarely for seeds. Here we evaluated whether classes of seed defenses were negatively correlated across species (consistent with tradeoffs in defense strategies), or whether groups of traits formed associations across species (consistent with seed defense syndromes). Using 16 of the most common pioneer tree species in a neotropical lowland forest in Panama we investigated relationships among four physical traits (seed fracture resistance, seed coat thickness, seed permeability, and seed mass) and two chemical traits (number of phenolic compounds and phenolic peak area), and their association with seed persistence. In addition, seed toxicity was assessed with bioassays in which we evaluated the activity of seed extracts against representative fungal pathogens and a model invertebrate. We did not find univariate tradeoffs between chemical and physical defenses. Instead, we found that seed permeability – a trait that distinguishes physical dormancy from other dormancy types – was positively associated with chemical defense traits and negatively associated with physical defense traits. Using a linear discriminant analysis and a hierarchical cluster analysis we found evidence to distinguish three distinct seed defense syndromes that correspond directly with seed dormancy classes (i.e., quiescent, physical, and physiological). Our data suggest that short and long‐term persistence of seeds can be achieved via two strategies: having permeable seeds that are well defended chemically, corresponding to the physiologically dormant defense syndrome; or having impermeable seeds that are well defended physically, corresponding to the physically dormant defense syndrome. In turn, transient seeds appear to have a lower degree of chemical and physical defenses, corresponding to the quiescent defense syndrome. Overall, we find that seed defense and seed dormancy are linked, suggesting that environmental pressures on seed persistence and for delayed germination can select for trait combinations defining distinct dormancy‐defense syndromes

    Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon

    Get PDF
    In Amazon secondary forests are dominated by pioneer species that typically produce large amounts of small and dormant seeds that are able to form a persistent soil seed bank. Seed dormancy in this group of species is overcome by environmental conditions found in open areas, such as high irradiation or alternating temperatures. Nevertheless, a variety of germination responses to environmental factors is known among pioneers; some of them may germinate in diffuse light or in darkness condition at constant temperature. Seed mass can be considered as one of the factors that promotes this variety. Regarding species with very small seeds, it seems that the trigger for germination is light and for larger seeds temperature alternation may be a more important stimulus. In this study we established a relationship between seed mass and germination response to light and alternating temperature for a group of seven woody pioneer species from the Amazon forest. We found that an increase in seed mass was followed by a decrease in the need for light and an increase in the tolerance to alternating temperatures. Understanding germination strategies may contribute with the knowledge of species coexistence in high diverse environments and also may assist those involved in forest management and restoration.Na Amazônia as florestas secundárias são dominadas por espécies pioneiras que, normalmente, produzem grandes quantidades de sementes pequenas, dormentes e capazes de formar bancos de sementes no solo. A dormência neste grupo de espécies é superada pelas condições ambientais de áreas abertas, como alta irradiação ou alternância de temperaturas. No entanto, uma variedade de respostas de germinação aos fatores ambientais é conhecida entre as pioneiras; algumas germinam em luz difusa ou no escuro sob temperatura constante. Um dos fatores promotores desta variedade é a massa das sementes. Parece que para as espécies com sementes muito pequenas, o estímulo para que ocorra germinação é a luz e, para sementes maiores, a alternância de temperatura pode ser um estímulo mais importante. Neste estudo, estabeleceu-se uma relação entre a massa das sementes e a resposta de germinação à luz e temperatura para sete espécies pioneiras arbóreas da floresta amazônica. Descobrimos que o aumento na massa da semente foi acompanhado por diminuição da necessidade por luz e aumento da tolerância à alternância de temperatura. Compreender estratégias de germinação pode contribuir para os conhecimentos sobre a coexistência de espécies em ambientes altamente diversos e também pode ajudar aos pesquisadores envolvidos no manejo e restauração florestal

    Evidence from Individual Inference for High-Dimensional Coexistence: Long-Term Experiments on Recruitment Response

    Get PDF
    Background: For competing species to coexist, individuals must compete more with others of the same species than with those of other species. Ecologists search for tradeoffs in how species might partition the environment. The negative correlations among competing species that would be indicative of tradeoffs are rarely observed. A recent analysis showed that evidence for partitioning the environment is available when responses are disaggregated to the individual scale, in terms of the covariance structure of responses to environmental variation. That study did not relate that variation to the variables to which individuals were responding. To understand how this pattern of variation is related to niche variables, we analyzed responses to canopy gaps, long viewed as a key variable responsible for species coexistence. Methodology/Principal Findings: A longitudinal intervention analysis of individual responses to experimental canopy gaps with 12 yr of pre-treatment and 8 yr post-treatment responses showed that species-level responses are positively correlated – species that grow fast on average in the understory also grow fast on average in response to gap formation. In other words, there is no tradeoff. However, the joint distribution of individual responses to understory and gap showed a negative correlation – species having individuals that respond most to gaps when previously growing slowly also have individuals that respond least to gaps when previously growing rapidly (e.g., Morus rubra), and vice versa (e.g., Quercus prinus). Conclusions/Significance: Because competition occurs at the individual scale, not the species scale, aggregated speciesleve

    Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects

    Get PDF
    An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics
    corecore