209 research outputs found

    Bioinformatics in crosslinking chemistry of collagen with selective cross linkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying the molecular interactions using bioinformatics tools before venturing into wet lab studies saves the energy and time considerably. The present study summarizes, molecular interactions and binding energy calculations made for major structural protein, collagen of Type I and Type III with the chosen cross-linkers, namely, coenzyme Q<sub>10</sub>, dopaquinone, embelin, embelin complex-1 & 2, idebenone, 5-O-methyl embelin, potassium embelate and vilangin.</p> <p>Results</p> <p>Molecular descriptive analyses suggest, dopaquinone, embelin, idebenone, 5-O-methyl embelin, and potassium embelate display nil violations. And results of docking analyses revealed, best affinity for Type I (- 4.74 kcal/mol) and type III (-4.94 kcal/mol) collagen was with dopaquinone.</p> <p>Conclusions</p> <p>Among the selected cross-linkers, dopaquinone, embelin, potassium embelate and 5-O-methyl embelin were the suitable cross-linkers for both Type I and Type III collagen and stabilizes the collagen at the expected level.</p

    Linguistic measures of chemical diversity and the &quot;keywords&quot; of molecular collections

    Get PDF
    Computerized linguistic analyses have proven of immense value in comparing and searching through large text collections (&quot;corpora&quot;), including those deposited on the Internet-indeed, it would nowadays be hard to imagine browsing the Web without, for instance, search algorithms extracting most appropriate keywords from documents. This paper describes how such corpus-linguistic concepts can be extended to chemistry based on characteristic &quot;chemical words&quot; that span more than traditional functional groups and, instead, look at common structural fragments molecules share. Using these words, it is possible to quantify the diversity of chemical collections/databases in new ways and to define molecular &quot;keywords&quot; by which such collections are best characterized and annotated

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applications where the intrinsic regulatory networks are subject to changes for adapting to internal or external stimuli.</p> <p>Results</p> <p>In this paper we investigate a novel non-stationary DBNs method with a potential regulator detection technique and a flexible lag choosing mechanism. We apply the approach for the gene regulatory network inference on three non-stationary time series data. For the Macrophages and Arabidopsis data sets with the reference networks, our method shows better network structure prediction accuracy. For the Drosophila data set, our approach converges faster and shows a better prediction accuracy on transition times. In addition, our reconstructed regulatory networks on the Drosophila data not only share a lot of similarities with the predictions of the work of other researchers but also provide many new structural information for further investigation.</p> <p>Conclusions</p> <p>Compared with recent proposed non-stationary DBNs methods, our approach has better structure prediction accuracy By detecting potential regulators, our method reduces the size of the search space, hence may speed up the convergence of MCMC sampling.</p

    Upregulation of mGlu2 receptors via NF-kB p65 acetylation is involved in the proneurogenic and antidepressant effects of acetyl-L-carnitine

    Get PDF
    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-kappa B p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-kappa B pathway, and in particular by p65 acetylation, and subsequent NF-kappa B-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressant

    Network Analysis Identifies ELF3 as a QTL for the Shade Avoidance Response in Arabidopsis

    Get PDF
    Quantitative Trait Loci (QTL) analyses in immortal populations are a powerful method for exploring the genetic mechanisms that control interactions of organisms with their environment. However, QTL analyses frequently do not culminate in the identification of a causal gene due to the large chromosomal regions often underlying QTLs. A reasonable approach to inform the process of causal gene identification is to incorporate additional genome-wide information, which is becoming increasingly accessible. In this work, we perform QTL analysis of the shade avoidance response in the Bayreuth-0 (Bay-0, CS954) x Shahdara (Sha, CS929) recombinant inbred line population of Arabidopsis. We take advantage of the complex pleiotropic nature of this trait to perform network analysis using co-expression, eQTL and functional classification from publicly available datasets to help us find good candidate genes for our strongest QTL, SAR2. This novel network analysis detected EARLY FLOWERING 3 (ELF3; AT2G25930) as the most likely candidate gene affecting the shade avoidance response in our population. Further genetic and transgenic experiments confirmed ELF3 as the causative gene for SAR2. The Bay-0 and Sha alleles of ELF3 differentially regulate developmental time and circadian clock period length in Arabidopsis, and the extent of this regulation is dependent on the light environment. This is the first time that ELF3 has been implicated in the shade avoidance response and that different natural alleles of this gene are shown to have phenotypic effects. In summary, we show that development of networks to inform candidate gene identification for QTLs is a promising technique that can significantly accelerate the process of QTL cloning

    Diurnal and Circadian Rhythms in the Tomato Transcriptome and Their Modulation by Cryptochrome Photoreceptors

    Get PDF
    BACKGROUND: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS: We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes) as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript

    Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    Get PDF
    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.Portuguese funds from FCT - Foundation for Science and Technology [UID/Multi/04326/2013]; SZN PhD fellowship via the Open University; ESF COST Action Seagrass Productivity: From Genes to Ecosystem Management [ES0906]info:eu-repo/semantics/publishedVersio

    Influence of Psychological Factors on Pain and Disability in Anterior Knee Pain Patients

    Get PDF
    AKP patients express chronic pain but also disability. However, the correlation between pain and disability is not complete and linear. Some patients with a lot of pain show mild disability while others with much less pain also show great disability. The disability is profoundly influenced by other emotional and cognitive factors that are associated with the perception of pain. Therefore, the clinical efforts do not have to be focused only on treating the pain as a feeling but on identifying and modifying these factor
    corecore