329 research outputs found

    Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework

    Get PDF
    Two-dimensional (2D) metal–organic frameworks (MOFs) have received a great deal of attention due to their relatively high charge carrier mobility and low resistivity. Here we report on the temperature-dependent charge transport properties of a 2D cobalt 2,3,6,7,10,11-triphenylenehexathiolate framework. Variable temperature resistivity studies reveal a transition from a semiconducting to a metallic phase with decreasing temperature, which is unprecedented in MOFs. We find this transition to be highly dependent on the film thickness and the amount of solvent trapped in the pores, with density functional theory calculations of the electronic-structure supporting the complex metallic conductivity of the material. These results identify the first experimentally observed MOF that exhibits band-like metallic conductivity

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 ΞΌg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 ΞΌg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 ΞΌg NO3-N g-1 in soil slurries. The addition of PO4 (5 ΞΌg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Get PDF
    , AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes.Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil

    Get PDF
    Biochar has been proposed as a tool to enhance phytostabilisation of contaminated soils but little data are available to illustrate the direct effect on roots in contaminated soils. This work aimed to investigate specific root traits and to assess the effect of biochar amendment on contaminant availability. Amendment with two different types of biochar, pine woodchip and olive tree pruning, was assessed in a rhizobox experiment with maize planted in a soil contaminated with significant levels of copper and arsenic. Amendment was found to significantly improve root traits compared to the control soil, particularly root mass density and root length density. Copper uptake to plants and ammonium sulphate extractable copper was significantly less in the biochar amended soils. Arsenic uptake and extractability varied with type of biochar used but was not considered to be the limiting factor affecting root and shoot development. Root establishment in contaminated soils can be enhanced by biochar amendment but choice of biochar is key to maximising soil improvement and controlling contaminant availability

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses

    Get PDF
    BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs), C(6)-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6)-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6)-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6)-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6)-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6)-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions. SIGNIFICANCE: The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this "division of labor" is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost

    The Orphan Gene ybjN Conveys Pleiotropic Effects on Multicellular Behavior and Survival of Escherichia coli

    Get PDF
    YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant
    • …
    corecore