282 research outputs found

    Comparison of (18)F SPECT with PET in myocardial imaging: A realistic thorax-cardiac phantom study

    Get PDF
    BACKGROUND: Positron emission tomography (PET) imaging with fluorine-18 ((18)F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 ((82)Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive (18)F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to (18)F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. METHODS: A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of (18)F and 22.2 MBq of Technetium-99m ((99m)Tc) in the SPECT study and with 7.4 MBq of (18)F and 370 MBq of (82)Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. RESULTS: The contrast for 3 cm, 2 cm and 1 cm inserts were for (18)F PET data, 1.0 ± 0.01, 0.67 ± 0.02 and 0.25 ± 0.01, respectively. For (82)Rb PET data, the corresponding contrast values were 0.61 ± 0.02, 0.37 ± 0.02 and 0.19 ± 0.01, respectively. For (18)F SPECT the contrast values were, 0.31 ± 0.03 and 0.20 ± 0.05 for 3 cm and 2 cm inserts, respectively. For (99m)Tc SPECT the contrast values were, 0.63 ± 0.04 and 0.24 ± 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". CONCLUSION: For smaller defects the (99m)Tc/(18)F SPECT imaging cannot entirely replace the more expensive (82)Rb/(18)F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Prevalence of self-reported finger deformations and occupational risk factors among professional cooks: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have pointed out that the school lunch workers in Japan are suffering from work-related disorders including finger deformations. The purpose of this study was to investigate the prevalence of self-reported finger deformations and the association with job-related risk factors.</p> <p>Methods</p> <p>A cross-sectional questionnaire study of 5,719 subjects (response rate: 81%, 982 men and 4,737 women) was undertaken during September 2003 to February 2004.</p> <p>Results</p> <p>Finger deformations were found among 11.7% of the men and 35.6% of the women studied, with significant differences among sex, age and sex-age groups. For both men and women the pattern of finger deformations across the hand was similar for the right and the left hand. For women, the deformations were found in about 10% of the distal interphalangeal joints of all fingers. Based on multiple logistic regression analyses, the factors female sex, age, the number of cooked lunches per cook and cooking activities were independently associated with the prevalence of finger deformations. High prevalence odds ratios were found for those frequently carrying or using tools by hands such as delivering containers, distributing meals, preparing dishes, washing equipment, cutting and stirring foods.</p> <p>Conclusions</p> <p>Among the school lunch workers studied, women had a higher prevalence of finger deformations on all joints of both hands. Various cooking tasks were associated with the prevalence of finger deformations. The results suggest that improvements in working conditions are important for preventing work-related disorders such as finger deformations.</p

    Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor

    Get PDF
    Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues

    “One-Size-Fits-All”? Optimizing Treatment Duration for Bacterial Infections

    Get PDF
    Historically, antibiotic treatment guidelines have aimed to maximize treatment efficacy and minimize toxicity, but have not considered the evolution of antibiotic resistance. Optimizing the duration and dosing of treatment to minimize the duration of symptomatic infection and selection pressure for resistance simultaneously has the potential to extend the useful therapeutic life of these valuable life-saving drugs without compromising the interests of individual patients

    An End to Endless Forms: Epistasis, Phenotype Distribution Bias, and Nonuniform Evolution

    Get PDF
    Studies of the evolution of development characterize the way in which gene regulatory dynamics during ontogeny constructs and channels phenotypic variation. These studies have identified a number of evolutionary regularities: (1) phenotypes occupy only a small subspace of possible phenotypes, (2) the influence of mutation is not uniform and is often canalized, and (3) a great deal of morphological variation evolved early in the history of multicellular life. An important implication of these studies is that diversity is largely the outcome of the evolution of gene regulation rather than the emergence of new, structural genes. Using a simple model that considers a generic property of developmental maps—the interaction between multiple genetic elements and the nonlinearity of gene interaction in shaping phenotypic traits—we are able to recover many of these empirical regularities. We show that visible phenotypes represent only a small fraction of possibilities. Epistasis ensures that phenotypes are highly clustered in morphospace and that the most frequent phenotypes are the most similar. We perform phylogenetic analyses on an evolving, developmental model and find that species become more alike through time, whereas higher-level grades have a tendency to diverge. Ancestral phenotypes, produced by early developmental programs with a low level of gene interaction, are found to span a significantly greater volume of the total phenotypic space than derived taxa. We suggest that early and late evolution have a different character that we classify into micro- and macroevolutionary configurations. These findings complement the view of development as a key component in the production of endless forms and highlight the crucial role of development in constraining biotic diversity and evolutionary trajectories

    Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin

    Get PDF
    Animal health depends on the ability of immune cells to kill invading pathogens, and on the resilience of tissues to tolerate the presence of pathogens. Trueperella pyogenes causes tissue pathology in many mammals by secreting a cholesterol-dependent cytolysin, pyolysin (PLO), which targets stromal cells. Cellular cholesterol is derived from squalene, which is synthesized via the mevalonate pathway enzymes, including HMGCR, FDPS and FDFT1. The present study tested the hypothesis that inhibiting enzymes in the mevalonate pathway to reduce cellular cholesterol increases the resilience of stromal cells to PLO. We first verified that depleting cellular cholesterol with methyl-β-cyclodextrin increased the resilience of stromal cells to PLO. We then used siRNA to deplete mevalonate pathway enzyme gene expression, and used pharmaceutical inhibitors, atorvastatin, alendronate or zaragozic acid to inhibit the activity of HMGCR, FDPS and FDFT1, respectively. These approaches successfully reduced cellular cholesterol abundance, but mevalonate pathway enzymes did not affect cellular resilience equally. Inhibiting FDFT1 was most effective, with zaragozic acid reducing the impact of PLO on cell viability. The present study provides evidence that inhibiting FDFT1 increases stromal cell resilience to a cholesterol-dependent cytolysin

    Calculating Evolutionary Dynamics in Structured Populations

    Get PDF
    Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced “games in phenotype space” and “evolutionary set theory.” There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, σ, and provide a method for efficient numerical calculation
    corecore