7 research outputs found

    Modelling large-scale CO2 leakages in the North Sea

    Get PDF
    A three dimensional hydrodynamic model with a coupled carbonate speciation sub-model is used to simulate large additions of CO2into the North Sea, representing leakages at potential carbon sequestration sites. A range of leakage scenarios are conducted at two distinct release sites, allowing an analysis of the seasonal, inter-annual and spatial variability of impacts to the marine ecosystem. Seasonally stratified regions are shown to be more vulnerable to CO2release during the summer as the added CO2remains trapped beneath the thermocline, preventing outgasing to the atmosphere. On average, CO2 injected into the northern North Sea is shown to reside within the water column twice as long as an equivalent addition in the southern North Sea before reaching the atmosphere. Short-term leakages of 5000 tonnes CO2over a single day result in substantial acidification at the release sites (up to -1.92 pH units), with significant perturbations (greater than 0.1 pH units) generally confined to a 10 km radius. Long-term CO2leakages sustained for a year may result in extensive plumes of acidified seawater, carried by major advective pathways. Whilst such scenarios could be harmful to marine biota over confined spatial scales, continued unmitigated CO2emissions from fossil fuels are predicted to result in greater and more long-lived perturbations to the carbonate system over the next few decades

    Ocean sprawl facilitates dispersal and connectivity of protected species

    Get PDF
    Highly connected networks generally improve resilience in complex systems. We present a novel application of this paradigm and investigated the potential for anthropogenic structures in the ocean to enhance connectivity of a protected species threatened by human pressures and climate change. Biophysical dispersal models of a protected coral species simulated potential connectivity between oil and gas installations across the North Sea but also metapopulation outcomes for naturally occurring corals downstream. Network analyses illustrated how just a single generation of virtual larvae released from these installations could create a highly connected anthropogenic system, with larvae becoming competent to settle over a range of natural deep-sea, shelf and fjord coral ecosystems including a marine protected area. These results provide the first study showing that a system of anthropogenic structures can have international conservation significance by creating ecologically connected networks and by acting as stepping stones for cross-border interconnection to natural populations

    A strain-induced freshwater pump in the Liverpool Bay ROFI

    No full text
    Liverpool Bay is a region of freshwater influence which receives significant freshwater loading from a number of major English and Welsh rivers. Strong tidal current flow interacts with a persistent freshwater-induced horizontal density gradient to produce strain-induced periodic stratification (SIPS). Recent work (Palmer in Ocean Dyn 60:219–226, 2010; Verspecht et al. in Geophys Res Lett 37:L18602, 2010) has identified significant modification to tidal ellipses in Liverpool Bay during stratification due to an associated reduction in pycnocline eddy viscosity. Palmer (Ocean Dyn 60:219–226, 2010) identified that this modification results in asymmetry in flow in the upper and lower layers capable of permanently transporting freshwater away from the Welsh coastline via a SIPS pumping mechanism. Observational data from a new set of observations from the Irish Sea Observatory site B confirm these results; the measured residual flow is 4.0 cm s−1 to the north in the surface mixed layer and 2.4 cm s−1 to the south in the bottom mixed layer. A realistically forced 3D hydrodynamic ocean model POLCOMS succeeds in reproducing many of the characteristics of flow and vertical density structure at site B and is used to estimate the transport of water through a transect WT that runs parallel with the Welsh coast. Model results show that SIPS is the dominant steady state, occurring for 78.2% of the time whilst enduring stratification exists only 21.0% of the year and enduring mixed periods, <1%. SIPS produces a persistent offshore flow of freshened surface water throughout the year. The estimated net flux of water in the surface mixed layer is 327 km3 year −1, of which 281 km3 year−1 is attributable to SIPS periods. Whilst the freshwater component of this flux is small, the net flux of freshwater through WT during SIPS is significant, the model estimates 1.69 km3 year−1 of freshwater to be transported away from the coast attributable to SIPS periods equivalent to 23% of annual average river flow from the four catchment areas feeding Liverpool Bay. The results show SIPS pumping to be an important process in determining the fate of freshwater and associated loads entering Liverpool Ba

    Process contribution to the time-varying residual circulation in tidally dominated estuarine environments

    Get PDF
    In tide dominated environments residual circulation is the comparatively weak net flow in addition to the oscillatory tidal current. Understanding the 3D structure of this circulation is of importance for coastal management as it impacts the net (longer-term and event-scale) transport of suspended particles and the advection of tracer quantities. The Dee Estuary, northwest Britain, is used to understand which physical processes have an important contribution to the time-varying residual circulation. Model simulations are used to extract the time-varying contributions of tidal, riverine (baroclinicity and discharge), meteorological, external and wave processes, along with their interactions. Under hypertidal conditions strong semi-diurnal interaction within the residual makes it difficult to clearly see the affect of a process without filtering. An approach to separate the residual into the isolated process contribution and the contribution due to interaction is described. Applying this method to two hypertidal estuarine channels, one tide-dominant and one baroclinic-dominant, reveals that process interaction can be as important as the sub-tidal residual process contributions themselves. The time-variation of the residual circulation highlights the impact of different physical process components at the event-scale of tidal conditions (neap and spring cycles) and offshore storms (wind, wave and surge influence). This gives insight into short-term deviation from the typical estuarine residual. Both channels are found to react differently to the same local conditions, with different short-term change in process dominance during events of high and low energy

    Physical processes contributing to the water mass transformation of the Indonesian Throughflow

    No full text
    The properties of the waters that move from the Pacific to the Indian Ocean via passages in the Indonesian archipelago are observed to vary with along-flow-path distance. We study an ocean model of the Indonesian Seas with reference to the observed water property distributions and diagnose the mechanisms and magnitude of the water mass transformations using a thermodynamical methodology. This model includes a key parameterization of mixing due to baroclinic tidal dissipation and simulates realistic water property distributions in all of the seas within the archipelago. A combination of air–sea forcing and mixing is found to significantly change the character of the Indonesian Throughflow (ITF). Around 6 Sv (approximately 1/3 the model net ITF transport) of the flow leaves the Indonesian Seas with reduced density. Mixing transforms both the intermediate depth waters (transforming 4.3 Sv to lighter density) and the surface waters (made denser despite the buoyancy input by air–sea exchange, net transformation?=?2 Sv). The intermediate transformation to lighter waters suggests that the Indonesian transformation contributes significantly to the upwelling of cold water in the global conveyor belt. The mixing induced by the wind is not driving the transformation. In contrast, the baroclinic tides have a major role in this transformation. In particular, they are the only source of energy acting on the thermocline and are responsible for creating the homostad thermocline water, a characteristic of the Indonesian outflow water. Furthermore, they cool the sea surface temperature by between 0.6 and 1.5°C, and thus allow the ocean to absorb more heat from the atmosphere. The additional heat imprints its characteristics into the thermocline. The Indonesian Seas cannot only be seen as a region of water mass transformation (in the sense of only transforming water masses in its interior) but also as a region of water mass formation (as it modifies the heat flux and induced more buoyancy flux). This analysis is complemented with a series of companion numerical experiments using different representations of the mixing and advection schemes. All the different schemes diagnose a lack of significant lateral mixing in the transformation

    Physical and dynamical oceanography of Liverpool Bay

    No full text
    The UK National Oceanography Centre has maintained an observatory in Liverpool Bay since August 2002. Over 8 years of observational measurements are used in conjunction with regional ocean modelling data to describe the physical and dynamical oceanography of Liverpool Bay and to validate the regional model, POLCOMS. Tidal dynamics and plume buoyancy govern the fate of the fresh water as it enters the sea, as well as the fate of its sediment, contaminants and nutrient loads. In this context, an overview and summary of Liverpool Bay tidal dynamics are presented. Freshwater forcing statistics are presented showing that on average the bay receives 233 m3 s - 1. Though the region is salinity controlled, river input temperature is shown to significantly modulate the plume buoyancy with a seasonal cycle. Stratification strongly influences the region's dynamics. Data from long-term moored instrumentation are used to analyse the stratification statistics that are representative of the region. It is shown that for 65% of tidal cycles, the region alternates between being vertically mixed and stratified. Plume dynamics are diagnosed from the model and are presented for the region. The spring-neap modulation of the plume's westward extent, between 3.5 ° W and 4° W, is highlighted. The rapid eastward erosion of the plume during spring tides is identified as a potentially important freshwater mixing mechanism. Novel climatological maps of temperature, salinity and density from the CTD surveys are presented and used to validate numerical simulations. The model is found to be sensitive to the freshwater forcing rates, temperature and salinities. The existing CTD survey grid is shown to not extend sufficiently near the coast to capture the near coastal and vertically mixed component the plume. Instead the survey grid captures the westward spreading, shallow and transient, portion of the plume. This transient plume feature is shown in both the long-term averaged model and observational data as a band of stratified fluid stretching between the mouth of the Mersey towards the Isle of Man. Finally the residual circulation is discussed. Long-term moored ADCP data are favourably compared with model data, showing the general northward flow of surface water and southward trajectory of bottom wate

    Modeling flocculation in a hypertidal estuary

    No full text
    When fine particles are involved, cohesive properties of sediment can result in flocculation and significantly complicate sediment process studies. We combine data from field observations and state-of-the-art modeling to investigate and predict flocculation processes within a hypertidal estuary. The study site is the Welsh Channel located at the entrance of the Dee Estuary in Liverpool Bay. Field data consist of measurements from a fixed site deployment during 12–22 February 2008. Grain size, suspended sediment volume concentration, and current velocity were obtained hourly from moored instruments at 1.5 m above bed. Near-bottom water samples taken every hour from a research vessel are used to convert volume concentrations to mass concentrations for the moored measurements. We use the hydrodynamic model Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) coupled with the turbulence model General Ocean Turbulence Model (GOTM) and a sediment module to obtain three-dimensional distributions of suspended particulate matter (SPM). Flocculation is identified by changes in grain size. Small flocs were found during flood and ebb periods—and correlate with strong currents—due to breakup, while coarse flocs were present during slack waters because of aggregation. A fractal number of 2.4 is found for the study site. Turbulent stresses and particle settling velocities are estimated and are found to be related via an exponential function. The result is a simple semiempirical formulation for the fall velocity of the particles solely depending on turbulent stresses. The formula is implemented in the full three-dimensional model to represent changes in particle size due to flocculation processes. Predictions from the model are in agreement with observations for both settling velocity and SPM. The SPM fortnight variability was reproduced by the model and the concentration peaks are almost in phase with those from field data
    corecore