1,224 research outputs found

    Combining Unthrottled Operation with Internal EGR under Port and Central Direct Fuel Injection Conditions in a Single Cylinder SI Engine

    No full text
    This experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered. Copyright © 2009 SAE International

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Parathyroid hormone's enhancement of bones' osteogenic response to loading is affected by ageing in a dose- and time-dependent manner

    Get PDF
    Decreased effectiveness of bones' adaptive response to mechanical loading contributes to age-related bone loss. In young mice, intermittent administration of parathyroid hormone (iPTH) at 20-80μg/kg/day interacts synergistically with artificially applied loading to increase bone mass. Here we report investigations on the effect of different doses and duration of iPTH treatment on mice whose osteogenic response to artificial loading is impaired by age. One group of aged, 19-month-old female C57BL/6 mice was given 0, 25, 50 or 100μg/kg/day iPTH for 4weeks. Histological and μCT analysis of their tibiae revealed potent iPTH dose-related increases in periosteally-enclosed area, cortical area and porosity with decreased cortical thickness. There was practically no effect on trabecular bone. Another group was given a submaximal dose of 50μg/kg/day iPTH or vehicle for 2 or 6weeks with loading of their right tibia three times per week for the final 2weeks. In the trabecular bone of these mice the loading-related increase in BV/TV was abrogated by iPTH primarily by reduction in the increase in trabecular number. In their cortical bone, iPTH treatment time-dependently increased cortical porosity. Loading partially reduced this effect. The osteogenic effects of iPTH and loading on periosteally-enclosed area and cortical area were additive but not synergistic. Thus in aged, unlike young mice, iPTH and loading appear to have separate effects. iPTH alone causes a marked increase in cortical porosity which loading reduces. Both iPTH and loading have positive effects on cortical periosteal bone formation but these are additive rather than synergistic

    Carpet-dust chemicals as measures of exposure: Implications of variability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in using chemicals measured in carpet dust as indicators of chemical exposures. However, investigators have rarely sampled dust repeatedly from the same households and therefore little is known about the variability of chemical levels that exist within and between households in dust samples.</p> <p>Results</p> <p>We analyzed 9 polycyclic aromatic hydrocarbons, 6 polychlorinated biphenyls, and nicotine in 68 carpet-dust samples from 21 households in agricultural communities of Fresno County, California collected from 2003-2005. Chemical concentrations (ng per g dust) ranged from < 2-3,609 for 9 polycyclic aromatic hydrocarbons, from < 1-150 for 6 polychlorinated biphenyls, and from < 20-7,776 for nicotine. We used random-effects models to estimate variance components for concentrations of each of these carpet-dust chemicals and calculated the variance ratio, λ, defined as the ratio of the within-household variance component to the between-household variance component. Subsequently, we used the variance ratios calculated from our data, to illustrate the potential effect of measurement error on the attenuation of odds ratios in hypothetical case-control studies. We found that the median value of the estimated variance ratios was 0.33 (range: 0.13-0.72). Correspondingly, in case-control studies of associations between these carpet-dust chemicals and disease, given the collection of only one measurement per household and a hypothetical odds ratio of 1.5, we expect that the observed odds ratios would range from 1.27 to 1.43. Moreover, for each of the chemicals analyzed, the collection of three repeated dust samples would limit the expected magnitude of odds ratio attenuation to less than 20%.</p> <p>Conclusions</p> <p>Our findings suggest that attenuation bias should be relatively modest when using these semi-volatile carpet-dust chemicals as exposure surrogates in epidemiologic studies.</p

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution

    Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries

    Get PDF
    BACKGROUND: Many researchers are interested to know if there are any improvements in recent treatment results for metastatic breast cancer in the community, especially for 10- or 15-year survival. METHODS: Between 1981 and 1985, 782 and 580 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries of the Surveillance, Epidemiology, and End Results (SEER) database. The lognormal statistical method to estimate survival was retrospectively validated since the 15-year cause-specific survival rates could be calculated using the standard life-table actuarial method. Estimated rates were compared to the actuarial data available in 2000. Between 1991 and 1995, further 752 and 632 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries. The data were analyzed to estimate the 15-year cause-specific survival rates before the year 2005. RESULTS: The 5-year period (1981–1985) was chosen, and patients were followed as a cohort for an additional 3 years. The estimated 15-year cause-specific survival rates were 7.1% (95% confidence interval, CI, 1.8–12.4) and 9.1% (95% CI, 3.8–14.4) by the lognormal model for the two registries of Connecticut and San Francisco-Oakland respectively. Since the SEER database provides follow-up information to the end of the year 2000, actuarial calculation can be performed to confirm (validate) the estimation. The Kaplan-Meier calculation for the 15-year cause-specific survival rates were 8.3% (95% CI, 5.8–10.8) and 7.0% (95% CI, 4.3–9.7) respectively. Using the 1991–1995 5-year period cohort and followed for an additional 3 years, the 15-year cause-specific survival rates were estimated to be 9.1% (95% CI, 3.8–14.4) and 14.7% (95% CI, 9.8–19.6) for the two registries of Connecticut and San Francisco-Oakland respectively. CONCLUSIONS: For the period 1981–1985, the 15-year cause-specific survival for the Connecticut and the San Francisco-Oakland registries were comparable. For the period 1991–1995, there was not much change in survival for the Connecticut registry patients, but there was an improvement in survival for the San Francisco-Oakland registry patients
    corecore