12 research outputs found

    Reduced Quantitative Ultrasound Bone Mineral Density in HIV-Infected Patients on Antiretroviral Therapy in Senegal

    Get PDF
    Background: Bone status in HIV-infected patients on antiretroviral treatment (ART) is poorly documented in resource-limited settings. We compared bone mineral density between HIV-infected patients and control subjects from Dakar, Senegal. Methods: A total of 207 (134 women and 73 men) HIV-infected patients from an observational cohort in Dakar (ANRS 1215) and 207 age-and sex-matched controls from the general population were enrolled. Bone mineral density was assessed by quantitative ultrasound (QUS) at the calcaneus, an alternative to the reference method (i.e. dual X-absorptiometry), often not available in resource-limited countries. Results: Mean age was 47.0 (+/- 8.5) years. Patients had received ART for a median duration of 8.8 years; 45% received a protease inhibitor and 27% tenofovir; 84% had undetectable viral load. Patients had lower body mass index (BMI) than controls (23 versus 26 kg/m(2), P<0.001). In unadjusted analysis, QUS bone mineral density was lower in HIV-infected patients than in controls (difference: -0.36 standard deviation, 95% confidence interval (CI): -0.59;-0.12, P = 0.003). Adjusting for BMI, physical activity, smoking and calcium intake attenuated the difference (-0.27, CI: -0.53; -0.002, P = 0.05). Differences in BMI between patients and controls explained a third of the difference in QUS bone mineral density. Among patients, BMI was independently associated with QUS bone mineral density (P<0.001). An association between undetectable viral load and QUS bone density was also suggested (beta = 0.48, CI: 0.02; 0.93; P = 0.04). No association between protease inhibitor or tenofovir use and QUS bone mineral density was found. Conclusion: Senegalese HIV-infected patients had reduced QUS bone mineral density in comparison with control subjects, in part related to their lower BMI. Further investigation is needed to clarify the clinical significance of these observations

    Vegetation Controls on Weathering Intensity during the Last Deglacial Transition in Southeast Africa

    Get PDF
    International audienceTropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (,18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding: Lake Malawi Drilling Project-Earth System History Program (NSF-EAR-0602404) funded field operations, logistics, and some laboratory analysis. NSF Graduate Research Fellowship (2009078688) provided student salary and tuition and some travel support for laboratory analysis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist
    corecore