9,585 research outputs found

    Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

    Get PDF
    Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition.11109Ysciescopu

    Effects of Cellgevity® on the milt quality of catfish,Clarias gariepinus extended in sodium citrate during chilled storage

    Get PDF
    Cellgevity® is a supplement reported to comprise mostly D-Ribose and L-Cysteine enriched glutathione, known to be an effective antioxidant that improves spermatozoa quality. However, its effect on milt characteristics has not been reported. This study, therefore, aimed to evaluate the effects of Cellgevity® on the milt quality of catfish (Clarias gariepinus) extended in sodium citrate during chilled storage. Pooled milt sample from three fishes was divided into three groups (T1, T2 and T3). The milt was extended in sodium citrate, and each group in triplicate was supplemented with Cellgevity® at 0 mg (T1), 125 mg (T2) and 250 mg (T3). The spermatozoa motility, concentration, viability and morphology were evaluated on days 0, 1, 2, 3, 4 and 5 of chilled storage. Data were expressed as mean ± standard deviation (SD) and analysed with a one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparison test. Mean ± SD spermatozoa motility was significantly (P < 0.001) lower in T2 and T3 than T1 before and during the first 3-days storage period. Mean ± (SD) spermatozoa concentration was significantly (P < 0.001) higher in T2 and T3 than T1 before and throughout the 5-days storage period. Mean ± SD live spermatozoa were significantly (P < 0.001) lower in T3 than T1 at day 2 of the storage. Mean ± SD total abnormal spermatozoa did not differ significantly (P > 0.05) among the groups before and throughout the 5-days storage period. It was concluded that although supplementation of Cellgevity® at 125 mg and 250 mg in milt of catfish, extended in sodium citrate in chilled storage maintained the sperm cells alive and motile up to four days of the storage. However, it did not improve the milt quality. Hence, it should not be supplemented in sodium citrate extended milt of catfish, Clarias gariepinus in chilled storage

    Microscopic coexistence of superconductivity and antiferromagnetism in underdoped Ba(Fe1-xRux)2As2

    Full text link
    We use 75^{75}As nuclear magnetic resonance (NMR) to investigate the local electronic properties of Ba(Fe1x_{1-x}Rux_{x})2_2As2_2 (x=x = 0.23). We find two phase transitions, to antiferromagnetism at TNT_N \approx 60 K and to superconductivity at TCT_C \approx 15 K. Below TNT_N, our data show that the system is fully magnetic, with a commensurate antiferromagnetic structure and a moment of 0.4 μB\mu_B/Fe. The spin-lattice relaxation rate 1/75T11/^{75}T_1 is large in the magnetic state, indicating a high density of itinerant electrons induced by Ru doping. On cooling below TCT_C, 1/75T11/^{75}T_1 on the magnetic sites falls sharply, providing unambiguous evidence for the microscopic coexistence of antiferromagnetism and superconductivity.Comment: Accepted in Phys. Rev. Let

    Observation of contemporaneous optical radiation from a gamma-ray burst

    Full text link
    The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.Comment: 10 pages, 2 figures. Accepted for publication in Nature. For additional information see http://www.umich.edu/~rotse

    Rethinking ‘Advanced Search’: A New Approach to Complex Query Formulation

    Get PDF
    Knowledge workers such as patent agents, recruiters and media monitoring professionals undertake work tasks where search forms a core part of their duties. In these instances, the search task often involves the formulation of complex queries expressed as Boolean strings. However, creating effective Boolean queries remains an ongoing challenge, often compromised by errors and inefficiencies. In this demo paper, we present a new approach to query formulation in which concepts are expressed on a two-dimensional canvas and relationships are articulated using direct manipulation. This has the potential to eliminate many sources of error, makes the query semantics more transparent, and offers new opportunities for query refinement and optimisatio

    Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array

    Full text link
    The longest common prefix (LCP) array is a versatile auxiliary data structure in indexed string matching. It can be used to speed up searching using the suffix array (SA) and provides an implicit representation of the topology of an underlying suffix tree. The LCP array of a string of length nn can be represented as an array of length nn words, or, in the presence of the SA, as a bit vector of 2n2n bits plus asymptotically negligible support data structures. External memory construction algorithms for the LCP array have been proposed, but those proposed so far have a space requirement of O(n)O(n) words (i.e. O(nlogn)O(n \log n) bits) in external memory. This space requirement is in some practical cases prohibitively expensive. We present an external memory algorithm for constructing the 2n2n bit version of the LCP array which uses O(nlogσ)O(n \log \sigma) bits of additional space in external memory when given a (compressed) BWT with alphabet size σ\sigma and a sampled inverse suffix array at sampling rate O(logn)O(\log n). This is often a significant space gain in practice where σ\sigma is usually much smaller than nn or even constant. We also consider the case of computing succinct LCP arrays for circular strings

    Measuring portfolio performance using a modified measure of risk

    Get PDF
    This paper reports the results of an investigation into the properties of a theoretical modification of beta proposed by Leland (1999) and based on earlier work of Rubinstein (1976). It is shown that when returns are elliptically symmetric, beta is the appropriate measure of risk and that there are other situations in which the modified beta will be similar to the traditional measure based on the capital asset pricing model. For the case where returns have a normal distribution, it is shown that the criterion either does not exist or reduces exactly to the conventional beta. It is therefore conjectured that the modified measure will only be useful for portfolios that have nonstandard return distributions which incorporate skewness. For such situations, it is shown how to estimate the measure using regression and how to compare the resulting statistic with a traditional estimated beta using Hotelling's test. An empirical study based on stocks from the FTSE350 does not find evidence to support the use of the new measure even in the presence of skewness.Journal of Asset Management (2007) 7, 388-403. doi:10.1057/palgrave.jam.225005

    Controlled Dephasing of Electrons by Non-Gaussian Shot Noise

    Full text link
    In a 'controlled dephasing' experiment [1-3], an interferometer loses its coherence due to entanglement with a controlled quantum system ('which path' detector). In experiments that were conducted thus far in mesoscopic systems only partial dephasing was achieved. This was due to weak interactions between many detector electrons and the interfering electron, resulting in a Gaussian phase randomizing process [4-10]. Here, we report the opposite extreme: a complete destruction of the interference via strong phase randomization only by a few electrons in the detector. The realization was based on interfering edge channels (in the integer quantum Hall effect regime, filling factor 2) in a Mach-Zehnder electronic interferometer, with an inner edge channel serving as a detector. Unexpectedly, the visibility quenched in a periodic lobe-type form as the detector current increased; namely, it periodically decreased as the detector current, and thus the detector's efficiency, increased. Moreover, the visibility had a V-shape dependence on the partitioning of the detector current, and not the expected dependence on the second moment of the shot noise, T(1-T), with T the partitioning. We ascribe these unexpected features to the strong detector-interferometer coupling, allowing only 1-3 electrons in the detector to fully dephase the interfering electron. Consequently, in this work we explored the non-Gaussian nature of noise [11], namely, the direct effect of the shot noise full counting statistics [12-15].Comment: 14 pages, 4 figure

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators
    corecore