71 research outputs found

    New data about the suspensor of succulent angiosperms : ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz

    Get PDF
    The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Evolutionary Diversification of SPANX-N Sperm Protein Gene Structure and Expression

    Get PDF
    The sperm protein associated with nucleus in the X chromosome (SPANX) genes cluster at Xq27 in two subfamilies, SPANX-A/D and SPANX-N. SPANX-A/D is specific for hominoids and is fairly well characterized. The SPANX-N gave rise to SPANX-A/D in the hominoid lineage ∼7 MYA. Given the proposed role of SPANX genes in spermatogenesis, we have extended studies to SPANX-N gene evolution, variation, regulation of expression, and intra-sperm localization. By immunofluorescence analysis, SPANX-N proteins are localized in post-meiotic spermatids exclusively, like SPANX-A/D. But in contrast to SPANX-A/D, SPANX-N are found in all ejaculated spermatozoa rather than only in a subpopulation, are localized in the acrosome rather than in the nuclear envelope, and are expressed at a low level in several nongametogenic adult tissues as well as many cancers. Presence of a binding site for CTCF and its testis-specific paralogue BORIS in the SPANX promoters suggests, by analogy to MAGE-A1 and NY-ESO-1, that their activation in spermatogenesis is mediated by the programmed replacement of CTCF by BORIS. Based on the relative density of CpG, the more extended expression of SPANX-N compared to SPANX-A/D in nongametogenic tissues is likely attributed to differences in promoter methylation. Our findings suggest that the recent duplication of SPANX genes in hominoids was accompanied by different localization of SPANX-N proteins in post-meiotic sperm and additional expression in several nongonadal tissues. This suggests a corresponding functional diversification of SPANX gene families in hominoids. SPANX proteins thus provide unique targets to investigate their roles in the function of spermatozoa, selected malignancies, and for SPANX-N, in other tissues as well

    Mechanisms of attenuation of pulmonary V'O_{2} slow component in humans after prolonged endurance training

    Get PDF
    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 ) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean\ub1SD: age 22.33\ub11.44 years, V'O2peak 3198\ub1458 mL \ub7 min-1 ) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by 3c5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of \u3c4 p of the V'O2 on-kinetics (30.1\ub15.9 s vs. 25.4\ub11.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by 3c5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the "additional" ATP usage rising gradually during heavy-intensity exercise

    Neural Responses to Truth Telling and Risk Propensity under Asymmetric Information

    Get PDF
    This research was supported by the Laureate Institute for Brain Research and the William K. Warren Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.Trust is multi-dimensional because it can be characterized by subjective trust, trust antecedent, and behavioral trust. Previous research has investigated functional brain responses to subjective trust (e.g., a judgment of trustworthiness) or behavioral trust (e.g., decisions to trust) in perfect information, where all relevant information is available to all participants. In contrast, we conducted a novel examination of the patterns of functional brain activity to a trust antecedent, specifically truth telling, in asymmetric information, where one individual has more information than others, with the effect of varying risk propensity. We used functional magnetic resonance imaging (fMRI) and recruited 13 adults, who played the Communication Game, where they served as the “Sender” and chose either truth telling (true advice) or lie telling (false advice) regarding the best payment allocation for their partner. Our behavioral results revealed that subjects with recreational high risk tended to choose true advice. Moreover, fMRI results yielded that the choices of true advice were associated with increased cortical activation in the anterior rostral medial and frontopolar prefrontal cortices, middle frontal cortex, temporoparietal junction, and precuneus. Furthermore, when we specifically evaluated a role of the bilateral amygdala as the region of interest (ROI), decreased amygdala response was associated with high risk propensity, regardless of truth telling or lying. In conclusion, our results have implications for how differential functions of the cortical areas may contribute to the neural processing of truth telling.Yeshttp://www.plosone.org/static/editorial#pee
    corecore