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Abstract
Trust is multi-dimensional because it can be characterized by subjective trust, trust anteced-

ent, and behavioral trust. Previous research has investigated functional brain responses to

subjective trust (e.g., a judgment of trustworthiness) or behavioral trust (e.g., decisions to

trust) in perfect information, where all relevant information is available to all participants. In

contrast, we conducted a novel examination of the patterns of functional brain activity to a

trust antecedent, specifically truth telling, in asymmetric information, where one individual

has more information than others, with the effect of varying risk propensity. We used func-

tional magnetic resonance imaging (fMRI) and recruited 13 adults, who played the Commu-

nication Game, where they served as the “Sender” and chose either truth telling (true

advice) or lie telling (false advice) regarding the best payment allocation for their partner.

Our behavioral results revealed that subjects with recreational high risk tended to choose

true advice. Moreover, fMRI results yielded that the choices of true advice were associated

with increased cortical activation in the anterior rostral medial and frontopolar prefrontal cor-

tices, middle frontal cortex, temporoparietal junction, and precuneus. Furthermore, when

we specifically evaluated a role of the bilateral amygdala as the region of interest (ROI),

decreased amygdala response was associated with high risk propensity, regardless of truth

telling or lying. In conclusion, our results have implications for how differential functions of

the cortical areas may contribute to the neural processing of truth telling.

Introduction
Trust is characterized by three constructs: subjective trust, behavioral trust, and trust anteced-
ents [1]. Subjective trust is an internal state of cognitive and social processing of trust (e.g., a
perception/evaluation of others as trustworthy or not), which results from a trust antecedent (a
psychological precursor leading to trust) and in behavioral trust (an overt action reflecting
trust). The interplay of these constructs directly or indirectly optimizes group performance [2–
7] and helps accomplish social capital in practical settings, such as the treatment success in psy-
chotherapy [8, 9], therefore it is important to study subjective trust, behavioral trust, and trust
antecedents.

PLOSONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 1 / 18

a11111

OPEN ACCESS

Citation: Suzuki H, Misaki M, Krueger F, Bodurka J
(2015) Neural Responses to Truth Telling and Risk
Propensity under Asymmetric Information. PLoS
ONE 10(9): e0137014. doi:10.1371/journal.
pone.0137014

Editor: Emmanuel Andreas Stamatakis, University
Of Cambridge, UNITED KINGDOM

Received: March 23, 2015

Accepted: August 11, 2015

Published: September 1, 2015

Copyright: © 2015 Suzuki et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research was supported by the
Laureate Institute for Brain Research and the William
K. Warren Foundation. The funders had no role in the
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist. This does not alter
the authors' adherence to all the PLOS ONE policies
on sharing data and materials.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137014&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Subjective trust may be determined by social and cognitive processing in specific brain
areas. For example, the amygdala is involved in trustworthiness judgments of neutral faces
[10–15]. The anterior insular cortex and dorsal anterior cingulate cortex, contributing to the
salience network [16, 17], may also serve our ability to perceive salient, affective tones in com-
munication and to preconceive trustworthiness. Furthermore, the dorsolateral prefrontal cor-
tex and posterior cingulate cortex, involved in the central-executive network [16], may
alternatively serve to scrutinize trustworthiness.

Behavioral trust (e.g., decisions to trust) has also been examined in the context of an eco-
nomic exchange paradigm. In investment games, [18], subjects show increased functional acti-
vation in the caudate head during their repayments to a benevolent investor relative to a
malevolent investor [19] and monetary gain following their investment [20]. Moreover, dam-
age to the ventromedial prefrontal cortex [21] and amygdala [22, 23] is associated with a
benevolent type of investor strategy (i.e., investing more) for their partner, suggesting the
important functions of the ventromedial prefrontal cortex and amygdala in social vigilance and
prospection in decisions to trust. Furthermore, in voluntary trust games, the decisions to trust
as the first move is related to increased activation in the paracingulate cortex/anterior rostral
medial prefrontal cortex (armPFC), and septal area [24]. With the same data, further analysis
shows that the armPFC and anterior insular cortex are involved in shared neurocircuitry of
decisions to trust and reciprocate, while the frontopolar cortex (fpPFC) and temporoparietal
junction (TPJ) are exclusively associated with decisions to initiate trusting [25]. These findings
indicate that behavioral trust may be associated with functions of the caudate, amygdala, and
some cortical areas.

While previous literature had addressed the patterns of brain activity concerning subjective
trust and behavioral trust, to our knowledge, few studies have focused on neural antecedents of
trust, especially under asymmetric information. Asymmetric information refers to an eco-
nomic/social communication where one participant has better or superior information than
the others [26–28], as opposed to perfect information, where relevant information is equally
available to all participants. The most important trust antecedent under asymmetric informa-
tion is truth telling behavior initiated by those who have better information [26]. For example,
in a psychotherapeutic interaction, a mental health practitioner, who is knowledgeable of the
diagnosis and treatment of mental health, communicates with a patient, who needs profes-
sional advice and help. If a patient realizes that the mental health practitioner tells the truth
and is convinced of the appropriateness of the practitioner’s treatment, the patient would be
willing to follow the practitioner’s advice and stay in the treatment for a sufficiently long time,
which builds therapeutic alliance and promotes the efficiency of interpersonal therapeutic
treatment [8, 9, 29–31] and medication treatment [32, 33]. In this way, well informed partici-
pant’s truth telling under asymmetric information is crucial to precede trust (i.e., trust anteced-
ent), and the current study aimed to examine neural biomarkers for truth telling. Notably,
while previous studies have mentioned functional brain activity to decisions to trust [24, 25],
which may be similar to brain activity in a less informed participant who needs to decide either
to trust or not under asymmetric information, few studies have addressed brain functions in a
well-informed participant’s truth telling over lying. Although one relevant study has shown
that cognitive functions of the anterior cingulate cortex, dorsolateral prefrontal cortex, and
ventromedial prefrontal cortex are involved in lying behavior under impersonal context [34],
functional brain activity during truth telling under asymmetric information has not been well
investigated.

In addition to truth telling, risk propensity might also serve as a trust antecedent in asym-
metric information, because risk propensity is essential to determine whether a well informed
participant overcomes potential risks for being exploited [35] and betrayed [36] following
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truth telling. Therefore, the present study also focused on functional brain activity in relation
to risk propensity.

Therefore, the aims of our study were to examine neuro-biomarkers for the interaction
between truth telling and risk propensity under asymmetric information, which would be
important to advance our understanding of how interpersonal trust is formed. To manipulate
asymmetric information, we used the Communication Game, designed as a paradigm to assess
truth-telling behavior in asymmetric information [26, 37, 38]. In the Communication Game,
one player, called the Sender, is informed of three payoff options—one leading to a high payoff
for oneself but a medium payoff for the partner, another one to a medium payoff for oneself
but a high payoff for the partner, and the other one to low payoffs for both—and decides to tell
the partner either the truth (“true advice”) or lie (“false advice”) regarding the high payoff for
the partner. For analyzing neuro-biomarkers, we used functional magnetic resonance imaging
(fMRI) and performed whole-brain analysis. In addition to the whole-brain analysis, we specif-
ically focused on amygdala activity because the amygdala might commonly active in both
trust-related behavior and risk-taking behavior. That is, amygdala functions contribute to
social processing of evaluating trustworthiness of faces in healthy subjects [10–15], and amyg-
dala activity to ratings of trustworthiness was reduced in patients with schizophrenia and autis-
tic spectrum disorder [39, 40], who often show difficulty in social judgment, including
trustworthiness [41–43]. Although the social evaluation of trustworthiness is not equivalent to
truth telling, it would be intriguing to examine whether amygdala functions extend to the psy-
chological processing of truth telling. On the other hand, the amygdala is also associated with
vigilance [12, 44, 45] and risk-taking behavior [46, 47]. For instance, patients with substance
abuse [48, 49] show reduced amygdala activity to risky decision-making as compared to
healthy controls. This suggests that their amygdala may be insensitive to risk decision making,
encouraging the psychiatric patients to show risk-taking behavior. Because of possible relations
of truth telling and risk propensity with amygdala functions, the present study focused on the
amygdala as the region-of-interest (ROI) analysis.

We hypothesized that (1) the Sender with high risk propensity would tell the truth more
often than one with low risk propensity, because high risk-takers tend to behave in trusting
manners [1, 50] and (2) the Sender would show functional brain changes, especially the amyg-
dala, during the choices of true advice (relative to false advice) in asymmetric information,
while this relationship depended on the degree of risk propensity.

Methods

Participants
The study was conducted at the Laureate Institute for Brain Research. The research protocol
was approved by the Western Institutional Review Board. Human research in this study was
conducted according to the principles expressed in the Declaration of Helsinki. All fourteen
healthy adults were recruited from Tulsa metro area. Study subjects gave written informed con-
sent to participate and received financial compensation. None of them showed any clinically
significant physical illness, a history of traumatic brain injury, severe vision/hearing loss, or
any Axis I psychiatric disorder based on the Structured Clinical Interview for DSM-IV-TR
Axis I Disorders (SCID-I/NP) [51]. One of them was, however, excluded because we faced a
technical problem when this subject was scanned. As a result, a total of N = 13 subjects (8
female), whose age ranged from 21 to 31, were included in the data analyses. Table 1 shows
some background characteristics of our sample. After the study, the subjects received financial
compensation for their study participation.
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Risk propensity
Risk Taking Inventory (RTI) was used to assess the frequency of risk-taking behavior in every-
day life, based on a five-point scale (1 = never; 5 = very often) [52]. The RTI is a self-report
questionnaire, where six dimensions of each of current and past risk-taking behaviors during
adulthood were measured. These dimensions included recreational risks (e.g., rock-climbing,
scuba diving), health risks (e.g., smoking, poor diet, high alcohol consumption), career risks
(e.g., quitting a job without another to go to), financial risks (e.g., gambling, risky investments),
safety risks (e.g., fast driving, city cycling without a helmet), and social risks (e.g., standing for
election, publicly challenging a rule or decision). The total score and each subscore were 60 and
10 at maximum, respectively, and a higher score indicated higher risk propensity.

Communication Game
As the fMRI task, the Communication Game was used to manipulate sequential situations
where individuals faced conflicts between their own financial gain and their partner’s gain in
asymmetric information [26, 37, 38]. The Communication Game was programmed using the
Willow experimental economics software framework (George Mason University, Fairfax, VA).
In this game, a pair of two players interacted with each other to determine payoffs to each
player. In the present study, although subjects were informed that they would interact with
either human or computer-programming player, the player partner was actually performed by
computer programming across all trials; the player partner was programmed to choose true/
false advice or to follow/disregard advice with varying probabilities, depending on subjects’
response at the previous trial (for details about the probabilities, see S1 Table). After the MRI
study, all subjects were debriefed and informed that they indeed interacted with a computer-
programming player. Fig 1A illustrates the flow of each Communication Game trial. Each sub-
ject played the role of either the Sender or Receiver; when the subject was assigned to one of the
roles, the partner (programmed by computer) was automatically assigned to the other role.
These roles were switched between two players across trials.

When subjects were designated to the Sender, they were presented with three payoff pairs
each of which indicated how much was allocated to each player (see Fig 1B as an example).
These pairs included (A) $0.20 given to oneself and $0.15 given to the partner, (B) $0.15 given

Table 1. Background Characteristics of the Sample (N = 13).

Variable Descriptive statistics

Mean age in years (SD) 25 (4)

Sex1

Female 8

Male 5

Educational level1

Some college/technical school (at least one year) 6

College graduate 6

Graduate professional training (master or above) 1

Mean RTI (SD) 20.46 (5.46)

Mean percentage of advice sent as the Sender

True advice 67.8% (22.7%)

False advice 31.6% (22.7%)

1Data are presented as frequency.

doi:10.1371/journal.pone.0137014.t001
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to oneself and $0.25 given to the partner, and (C) $0.10 to given to oneself and the partner,
although these pairs were shuffled every trial (e.g., the pair of $0.20 and $0.15 belongs to option
A sometimes and option B or C other times). The Sender was instructed to choose one best
pair allocating the most money to the partner (i.e., Receiver) within 6 sec (e.g., option B in Fig
1B). However, the Sender was also instructed that she/he could try to deceive the partner to
gain more money for her-/himself (e.g., option A in Fig 1B) or to make even allocation (e.g.,
option C in Fig 1B). That is, in such a conflict situation, the Sender could deliver true advice
(i.e., telling a truth) or false advice (i.e., telling a lie) to the partner. Note that the pair of $0.10
and $0.10 was included because it rules out the possibility that the Sender tactically chose true

Fig 1. Experimental design. (A) Timeline for a single Communication Game. A subject was assigned to
either the Sender or Receiver. The Sender viewed three payment pairs and was instructed to choose true
advice (the pair allocating the most money to the Receiver) or false advice (the pairs allocating less money to
the Receiver) for the Receiver. In contrast, the Receiver could not view the payment pairs. Instead, the
Receiver was instructed to choose one pair based on the Sender’s advice. The Receiver’s choice determined
the final allocation of money to each player. Finally, both the Sender and Receiver could view information
about whether their partner was trustworthy or trusting. (B) An example of three payment pairs which the
Sender might view during a Communication Game trial. In this example, the Sender (S) delivered true advice
if she/he chose option B; the Sender delivered false advice if she/he chose options A or C. Then, the
Sender’s choice of advice was presented to the Receiver (R), and the Receiver did follow (“F”) or did not
follow (“NF”) the advice. The Receiver’s choice determined howmuch S and R gained.

doi:10.1371/journal.pone.0137014.g001
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advice to spike the partner’s expected choice of not following the advice and to gain her/his
own benefit, rather than choosing true advice as being honest for the partner [26].

In contrast, when subjects were designated as the Receiver, they waited for 6 sec during
which the partner (i.e., Sender) chose true or false advice. Then the Receiver was presented
with a message showing which payoff was advised by the partner. For example, if the partner
selected option B, the Receiver viewed a message, “You receive the most money with B.” Note
that the information about the payoff pairs was not disclosed to the Receiver. In this way, the
Sender had more pieces of information (i.e., available payoff pairs) than the Receiver, manipu-
lating information asymmetry between two players. The Receiver had to choose one option
based on only the partner’s advice within 6 sec. If the Receiver trusted the partner, the Receiver
was expected to choose the option according to the advice; otherwise, the Receiver would
choose the option against the advice.

Importantly, the Receiver’s choice determined the final payoff. Then, both the Sender and
Receiver reviewed their partner’s choice behavior. That is, the Sender was informed whether or
not the Receiver followed her/his advice. On the other hand, the Receiver was informed
whether she/he gained the most money. When the next trial started, a subject’s role (either
Sender or Receiver) was determined randomly, and the payoff pairs were shuffled across
options A, B, and C.

Although we collected data of subjects’ responses as both the Sender and Receiver, the pres-
ent study focused on only subjects’ responses as the Sender. This was because the present study
specifically aimed to examine functional brain responses to the choices of true advice/truth tell-
ing as a trust antecedent in asymmetric information.

Procedure and MRI data acquisition
Prior to scans, subjects were asked to complete the RTI and then given instruction of how to
play the Communication Game with their partner. They were also told that they could get
money based on their task performances, although all subjects ultimately received $20.00
regardless of their actual performances. Some subjects met a confederate face-to-face to make
them believe that a potential player partner existed, but other subjects did not meet anyone.
Although our analyses mixed these subjects, a previous study revealed that functional brain
responses during economic exchange games were not affected by a prior personal encounter
with a player partner [53].

Neuroimaging data were acquired on Discovery MR750 3 Tesla MRI whole-body MRI scan-
ner (General Electric Healthcare Technologies, Waukesha, WI) equipped with 32-channel
MRI receiver capable of conducting, in real time, fMRI with parallel imaging such as Sensitivity
Encodings (SENSE) [54]. An 8-element receive-only head coil array was used for fMRI signal
reception. During each fMRI scan, physiological cardiac and respiratory waveforms were
simultaneously acquired (40 Hz sampling rate). The cardiac waveform was measured using a
photoplethysmograph pad with an infra-red emitter, pulse oximetry from the subject’s left
index finger; respiration waveform was measured using a pneumatic respiration belt. MRI ses-
sion involved a localizer scan for prescribing the following anatomical and functional scans, a
5-minute anatomical scan for localizing and aligning functional scans, a 7.5-minute resting-
state functional scan, and four 9-minute Communication-Game-related functional scans. For
the anatomical scan, one three-dimensional T1-weighted magnetization prepared rapid gradi-
ent echo (MPRAGE) scan with SENSE (TR/TE = 5/1.92 ms, inversion/delay time TI/
TD = 725/1400 ms, flip angle = 8°, FOV = 240 mm, axial slices per slab = 128, image
matrix = 256 × 256, voxel volume = 0.94 × 0.94 × 1.20 mm3, acceleration factor R = 2, sampling
band-width = 31.3 kHz) was acquired in the axial plane. For the functional scans, blood-
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oxygen-level-dependent (BOLD) images were acquired with a T2�-weighted single-shot gradi-
ent-recalled echo-planer imaging (EPI) sequence (TR/TR = 2000/25 ms, flip angle = 78°,
FOV = 240 mm, acquisition matrix = 96 × 96 reconstructed to image matrix of 128 × 128,
voxel volume = 1.875 × 1.875 × 2.900 mm3, axial slices per volume = 34, number of vol-
umes = 263, SENSE acceleration factor R = 2 in the phase encoding (anterior-posterior com-
missure plane) direction, sampling bandwidth = 250kHz).

Each of Communication Game functional scans consisted of 24 trials; subjects were
assigned to the Sender in 12 trials and the Receiver in the other 12 trials. Since our focus was to
analyze functional brain responses to the choices of true advice, our data analyses used only
imaging data acquired during Communication Game trials where subjects acted as the Sender.

The total amount of time for MRI scans was less than 2 hours. During all functional scans,
simultaneous electroencephalography (EEG) recordings were additionally performed using a
32-channel MR-compatible EEG system (Brain Products GmbH), although EEG data were not
used in the present study.

fMRI data preprocessing
Analysis of Functional Neuroimages (AFNI) [55] was used for fMRI data analyses. The first
four volumes in each scan were excluded from the data analysis to avoid T1 equilibrium effect.
Physiological noise correction was conducted to suppress cardiorespiratory signal modulations
by utilizing the cardiac and respiratory waveforms recorded during scans and employing the
RETROICOR [56] implementation in AFNI. Further, slice timing correction and volume regis-
tration to the first volume were applied. The EPI images were spatially transformed to the
Talairach and Tornoux [57] template brain using Advanced Normalization Tools (ANTS,
http://picsl.upenn.edu/software/ants/) with the Symmetric Normalization (SyN) method [58].
SyN is an algorithm for applying a bi-directional diffeomorphism, with maximizing a cross-
correlation metric. The normalized image was resampled to 1.875 mm3 isotropic voxel. Spatial
smoothing was applied by convolving a 4.0mm-based full width at half maximum (FWHM)
Gaussian kernel. The signal time course was scaled to percent change relative to the mean sig-
nal across time in each voxel. General linear model (GLM) analysis was conducted to evaluate
functional brain activation. The design matrix included modeled responses for showing a role
assignment image, the Sender’s decision-making, wait as the Sender, outcome message for the
Sender, the Receiver’s decision-making, wait as the Receiver, and outcome message for the
Receiver (see Fig 1A). The response models were constructed by convolving boxcar functions
for each event time course with a Gamma function model of hemodynamic response. In order
to incorporate within-subject response variability into our group analysis, we estimated the
trial-wise response of the Sender’s decision-making by modeling each trial response indepen-
dently [59]. This yielded beta series of trial-wise responses of the Sender’s decision-making. In
addition to these task-related regressors, six motion parameters (shifts in x, y, and z directions
and roll, pitch, yaw rotations), their temporal derivatives, and 4th-order polynomial regressors
for modeling slow frequency noises were included in the design matrix.

Statistical analysis
For the behavioral analysis (S1 Dataset), we first checked whether the number of choosing true
advice was related to age (using Spearman correlation), gender, and educational levels (using
one-way ANOVA). Then Spearman’s rank correlation was used to test the associations
between the total RTI score and the number of instances choosing true advice. In addition, the
other Spearman correlations between each of the RTI subscores (i.e., recreational risks, health
risks, career risks, financial risks, safety risks, and social risks) and the number of instances
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choosing true advice was employed, with Bonferroni-typed adjustments for multiple
comparisons.

For fMRI analysis (S2 Dataset), we employed linear mixed-effects models (LME) analysis
[60] and treated subject variability as a random-effect variable in the R statistical computing
language and environment [61]. The beta series of the Sender’s decision-making activation was
entered as a dependent variable. The advice choice (the choices of true advice relative to false
advice), the standardized RTI score, and their interaction were entered as fixed effects and sub-
ject variability as a random effect. The statistical parametric map was thresholded with voxel-
wise p< 0.005 and then cluster size� 65 with first-nearest neighbor clustering for family-wise
error correction. Cluster size threshold was determined by a Monte-Carlo simulations using
3dClustSim in AFNI with smoothness of 5.31 × 5.43 × 5.14 mm, which was estimated from a
residual image of the LME analysis.

In addition, the amygdala ROIs in both hemispheres were created from the Talairach and
Tornoux (57) atlas. This ROI analysis (S3 Dataset) was performed based on our a priori
hypothesis that amygdala function would be commonly associated with both truth-telling and
risk propensity, as discussed earlier. The ROIs were resampled to the resolution of the normal-
ized functional image, clipping off voxels that were less than 50% occupied. The beta values
within the ROIs were averaged for each of the Sender’s decision-making epochs using 3dROI-
stats in AFNI. Then three-way repeated measures ANCOVA was used, with the average BOLD
signal within each ROI as the dependent variable, the advice choice and hemisphere as the
within-subjects variables, and the RTI score as the between-subjects covariate.

Results

Behavioral analysis
The number of instances choosing true advice was not affected by age (ρ(11) = −0.05,
p> 0.05), gender (F(1,11) = 1.55, p> 0.05), or educational level (F(2,10) = 2.68, p> 0.05).
Moreover, Table 2 shows that the number of instances choosing true advice was not signifi-
cantly correlated with the total RTI score. Nevertheless, in the subscale analyses, interestingly,
the number of instances choosing true advice was correlated only with recreational risks; the
Senders with high recreational risks were likely to deliver more true advice than those with low
recreational risks. The other dimensions of risk-taking behaviors were not correlated with the
number of instances choosing true advice.

Functional MRI analysis of the whole brain
Our LME results of the whole-brain analysis revealed that there were main effects of advice
choice, as well as the standardized RTI score, on functional brain activity (see Table 3). Specifi-
cally, when subjects served as the Sender and chose true advice, the following brain regions
showed increased hemodynamic activity: bilateral anterior rostral medial prefrontal cortex
(armPFC), bilateral middle frontal cortex, right temporoparietal junction (TPJ), bilateral fron-
topolar prefrontal cortex (fpPFC), and right precuneus (see Fig 2). Furthermore, when the sub-
jects exhibited a high RTI score, they showed decreased right middle fronto-cortical activity
during decision-making as the Sender (Fig 3). Finally, there was no interaction effect between
the advice choice and the RTI score.

Functional MRI analysis of the amygdala
Table 4 shows the results of amygdala activity during decision-making as the Sender. Note that
two subjects were excluded from this analysis because they never chose false advice across
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trials. Our results yielded that the advice choice was not associated with bilateral amygdala
activity. In contrast, the effect of the RTI score on amygdala activity (across hemispheres) was
significant. Follow-up Spearman correlation indicated that the RTI score was negatively associ-
ated with amygdala activity (ρ(8) = −0.76 p< 0.01); when subjects, acting as the Sender,
showed higher RTI score, they were likely to exhibit decreased amygdala activity during deci-
sion making, regardless of the advice choice or hemisphere (see Fig 4).

Discussion
We conducted a novel exploration of functional brain responses to the choices of truth telling
and risk propensity in asymmetric information. We hypothesized that when subjects per-
formed as the Sender they would show functional brain changes, especially the amygdala, dur-
ing the choices of true advice, depending on their risk propensity. The study revealed three
major findings.

First, risk propensity was not significantly correlated with the choices of true advice. This
was slightly surprising because previous studies have suggested the relationship between trust-
ing behavior and risk propensity [1, 50]. Our lack of finding this correlation might be due to
the small sample size. However, when each of different types of risk propensity were tested, rec-
reational risk-taking type was significantly correlated with the choices of true advice. That is,
the higher individuals showed in the recreational aspects of risk propensity (e.g., rock-climbing,

Table 2. Spearman’s Rank Correlations between RTI Scores and the Number of the choices of True Advice (N = 13).

Total Recreational Health Career Financial Safety Social

Number of choices of true advice 0.38 0.74* 0.04 −0.08 0.16 0.21 0.53

Note: Values indicate Spearman’s correlation coefficients, with df = 11.

*p < .05 with the Bonferroni correction.

doi:10.1371/journal.pone.0137014.t002

Table 3. Linear Mixed-Effects Models of theWhole-Brain Analysis of BOLDResponses in Relation to the Advice Choice and Risk Propensity
(N = 13).

Brain region BA β F TC X TC Y TC Z Cluster size

Main effect of the advice selection (AS)—true advice vs. false advice

Bi Anterior rostral medial prefrontal cortex 9/32 0.15 27.60** −6.6 −32.8 32.5 695

R Middle frontal cortex 6/8 0.24 21.18** −38.4 −15.9 45.6 415

R Temporoparietal junction 39/40 0.11 14.59** −47.8 51.6 28.8 106

R Frontopolar prefrontal cortex 10 0.19 16.56** −17.8 −55.3 11.9 101

L Middle frontal cortex 6/8 0.10 12.81** 29.1 −15.9 49.4 80

R Lateral frontopolar prefrontal cortex 10 1.11 20.03** −30.9 −53.4 6.2 77

R Precuneus 7 0.13 14.77** −0.9 64.7 41.9 71

L Frontopolar prefrontal cortex 9/10 0.24 16.88** 29.1 −53.4 26.9 65

Main effect of the total RTI score (RTI)

R Middle frontal cortex 6/8 −0.05 22.76** −21.6 −21.6 51.2 73

Interaction of AS × RTI

No interaction effect

**Significant at p < .005 and 65 voxels. df = 1, 604. β = the peak standardized coefficient within clustered activation. Talairach coordinate (abbreviated as

TC) represents the location showing the peak F-statistic of clustered activation. Bi = bilateral, L = left hemisphere, R = right hemisphere, BA = Brodmann

area.

doi:10.1371/journal.pone.0137014.t003

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 9 / 18



scuba diving), the more likely they were to tell the truth to the partner. This is reasonable
because some studies have reported that individuals with high recreational risks are inclined to
show openness and curiosity for a novel situation [62, 63], which might motivate them to pur-
sue adventurous interaction with a stranger and to tell the truth to the stranger. Future research
needs to scrutinize the relationship between the specific domain of recreational risks and truth
telling.

Whether subjects told the truth or a lie in asymmetric information was determined by not
only the behavioral factor of recreational risk propensity but also the neurobiological factor of
functional cortical activation, and this was our second major finding. When the subjects played

Fig 2. Themain effects of the choices of true advice (relative to false advice) on functional brain
activation when subjects played the role of the Sender.R = right hemisphere; armPFC = anterior rostral
medial prefrontal cortex; PCUN = precuneus; TPJ = temporoparietal junction; MFC = middle frontal cortex;
fpPFC = frontopolar prefrontal cortex.

doi:10.1371/journal.pone.0137014.g002

Fig 3. Themain effects of the total RTI score on functional brain activation when subjects played the
role of the Sender.R = right hemisphere; MFC = middle frontal cortex.

doi:10.1371/journal.pone.0137014.g003
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the role of the Sender, some of their cortices showed increased functional activation in response
to the choices of true advice. This cortical activation specifically included the bilateral armPFC,
bilateral middle frontal cortex, right TPJ, bilateral fpPFC, and right precuneus. These findings
suggest that the bilateral prefrontal cortex, as well as TPJ and precuneus in the right hemi-
sphere, may be involved in the neural processing of truth telling under asymmetric informa-
tion. Consistent with these fMRI results, previous studies using voluntary trust games have
shown that increased activation in the armPFC is related to both reciprocity and trust [24, 25],
and increased activation in the bilateral fpPFC and right TPJ is exclusively associated with
trusting behavior [25]. Note that voluntary trust games assess trusting behavior under perfect
information, where no players have more or less information to play the games than another.
In contrast, our Communication Game measured truth-telling behavior under asymmetric
information, where the Sender had superior information regarding available payment pairs
and served as an advisor for the partner. In spite of these different relational contexts between
voluntary trust games and the Communication Game, we obtained common neuroimaging
evidence between the studies. In other words, our results extended previous findings, such as
that the bilateral armPFC, bilateral fpPFC, and right TPJ are involved in not only decisions to
trust in perfect information but also decisions to tell the truth in asymmetric information. This
suggests the possibility that the bilateral armPFC, bilateral fpPFC, and right TPJ are general
neuro-biomarkers for decisions to tell the truth in economic transactions.

The armPFC and TPJ are connected to each other anatomically [64, 65] and functionally
[66], and these regions, along with the precuneus, have been considered as parts of the neural
network for the mentalizing system [66–68] or theory of mind (ToM) [69–71], both of which
refer to the ability to attribute, reason about, and represent the mental states of another person
[72]. While the neural network of the mentalizing system/ToM consists of multiple brain
regions [67, 69, 70], the armPFC, TPJ, and precuneus seem to be particularly important in phil-
osophical reasoning and trust in communication, such as true/false belief reasoning [73], the
beliefs in moral judgment [74], understanding and predicting other people’s intensions [75],
and cooperation and deception [76, 77]. The current results of functional responses to the
choices of true advice in the armPFC, TPJ, and precuneus seem to be consistent with the above

Table 4. Repeatedmeasures ANCOVA of the Amygdala BOLD Responses in Relation to the Advice
Choice, Risk Propensity, and Hemisphere (N = 11).

Source df F partial η2

Between subjects

RTI score (RTI) 1 11.98** 0.568

Within-group error 9 (0.00)

Within subject

Advice selection (AS) 1 2.33 0.200

Hemisphere (H) 1 0.14 0.000

RTI × AS 1 2.65 0.220

RTI × H 1 0.24 0.040

AS × H 1 0.00 0.000

RTI × AS × H 1 0.28 0.000

Within-group error 9 (0.00)

Note: Values enclosed in parentheses represent mean square errors. RTI score was included as a

covariate in the model.

**p < .01.

doi:10.1371/journal.pone.0137014.t004
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findings, and they suggest that the neural mechanism underlying the mentalizing system/ToM
presumably influences decisions to tell the truth in asymmetric information.

The above findings also suggest that dysfunctional armPFC, TPJ, and/or precuneus may be
the sign of high risk for social communication problems regarding honesty and deception. For
example, autistic children show atypically decreased responses to ToM tasks in the medial PFC
and TPJ [78, 79], and exhibit impaired ToM-related behaviors [80, 81], such as “too much hon-
esty/truth telling” [82]. Although speculative, these studies, as well as our current results, may
suggest that increased PFC-TPJ responses to truth telling plays a role in executing context-
appropriate moral judgments of truth telling.

In addition to the armPFC, TPJ, and precuneus, our results also identified greater functional
activation in the fpPFC in both hemispheres during the choices of true advice. The fpPFC
partly functions as the representation of a long-term goal-oriented sequence of multiple social
events and rules [83], such as subgoal processing of problem-solving (i.e., procedural planning
of achieving a first subgoal before higher-order subgoals are satisfied) [84]. Thus, our results
might indicate that decisions to tell the truth were motivated at the base of the long-term pros-
pects of consequences and benefits of repeatedly delivering true advice, which was reflected as
greater activation in the fpPFC during the choices of true advice in the present study [25, 83].

Furthermore, we found increased activity in the bilateral middle frontal cortex when sub-
jects chose true advice. A previous study has reported that this cortical area, especially Brod-
mann area 8, shows greater activation as individuals experience increased uncertainty in social
events [85]. Our Communication Game indeed created some degrees of uncertainty in social
interactions between the Sender and the Receiver, because, for example, the Sender was uncer-
tain about whether the partner would follow her/his advice. Hence, our findings of increased
activity in the middle frontal cortex in the Senders might reflect their uncertainty about the
partner’s subsequent decisions to trust. However, our results additionally revealed that the
right middle frontal cortex showed decreased activity in individuals with high risk propensity.
This might reflect that high risk-takers were less concerned with uncertainty or a risk of a nega-
tive outcome, such as their advice being rejected by the partner, in the Communication Game
than low risk-takers.

The third main finding was association of the amygdala response with risk propensity,
regardless of the advice choice. When subjects were high in risk propensity, they bilaterally
showed decreased amygdala activity during the decision-making of advice for the partner.
Although this finding was not directly related to our primary interest in truth telling, it may
suggest that low risk-takers tend to have increased amygdala activity during social interactions.
The relationship between the amygdala and social perception has been reported, such that

Fig 4. The effects of the RTI score on functional amygdala activation during decision-making of
advice when subjects played the role of the Sender. The y-axis represents β coefficients. R = right
hemisphere.

doi:10.1371/journal.pone.0137014.g004
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increased activation in the amygdala is found in response to untrustworthy faces [11–13, 15],
although the relationship may not be monotonic [14, 15]. Therefore, it may be possible that, as
compared to high risk-takers, low risk-takers show negative bias in social perception of the
partner (e.g., as being more untrustworthy) during social interactions.

Alternatively, the difference in amygdala activity to the choices of advice between low and
high risk-takers may reflect the intensity of their social vigilance. Previous studies have shown
that increased amygdala activation is related to experience of increased social vigilance [12,
86]. In the present study, low risk-takers showed greater amygdala activation during the
choices of advice than high risk-takers, suggesting that low risk-takers possibly faced more vigi-
lance with the partner as compared to high risk-takers. In contrast, high risk-takers may show
blunted amygdala response to such social vigilance. Future research needs to examine the rela-
tionship between risk propensity, social perception/vigilance, and functional amygdala activity
during social interactions.

Therefore, our neuroimaging results revealed that truth telling was associated with increased
activation in the armPFC, TPJ, precuneus, middle FC, and fpPFC. We suggest that these identi-
fied brain regions may be biomarkers for truth telling under asymmetric information, which
can be applicable to practical settings. For instance, trust in a therapeutic relationship between
a mental health practitioner and a patient, called therapeutic alliance, is critical to predict treat-
ment success [8, 9, 29–33]. To assist building a therapeutic alliance, both practitioner and
patient are required to tell the truth under asymmetric information. That is, while the practi-
tioner needs to tell the truth/appropriateness about diagnosis, prognosis, and/or treatment, the
patient also needs to tell the truth about their symptoms. By measuring and presenting brain
activities (especially a practitioner’s activities) identified in the present study, it may be possible
to overcome a patient’s skepticism and to convince the patient to follow the practitioner’s
advice, which would contribute to the development of therapeutic alliance.

Although our results showed novel and significant implications in the neural activity for
truth telling in the transaction of asymmetric information, the current study had a limitation.
Our data were based on N = 13 subjects, which was not large sample. Thus, it may be necessary
confirm our findings with a larger sample size, although the number of false positives should
not be affected by a small sample size [87]. Another study limitation was that most subjects
delivered true advice more often than false advice (see Table 1), which might slightly bias
BOLD signal contrasts between the two conditions. This biased behavioral pattern is consistent
with previous findings [26]. Similar to the above issue, we found that, when subjects acted as
the Receiver, the majority of them overwhelmingly followed advice. Consequently, the present
study made it difficult to obtain BOLD contrasts between following advice (86.1% of all trials
on average) and not following advice (12.6% of all trials on average), although this analysis was
additionally interesting. Future studies need to increase behavioral variance to balance the fre-
quency of responses as the Sender and Receiver respectively, as well as focusing on functional
brain activity during the performances as the Receiver.

In conclusion, the present study examined the brain activity in relation to truth telling and
risk propensity under asymmetric information. It was found that increased frequency of truth
telling was associated with increased recreational type of risk propensity. In addition, our LME
models of the whole-brain analysis revealed that truth telling led to greater functional activa-
tion in the bilateral armPFC, bilateral fpPFC, bilateral middle frontal cortex, right TPJ, and
right precuneus, while right middle fronto-cortical activity was additionally influenced by risk
propensity. Finally, there was significant effect of risk propensity on amygdala response during
decision-making of advice, such that low risk-takers showed elevated amygdala response. This
study provided social implications regarding the neural system for truth telling in asymmetric
information.

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 13 / 18



Supporting Information
S1 Dataset. Demographic and Behavioral Data. The variable for “sex” is coded as 1 = female
and 2 = male. The variable for “education” is coded as 5 = Some college or technical school (at
least one year), 6 = College graduate, and 7 = Graduate professional training (Masters or
above).
(XLSX)

S2 Dataset. Functional Whole Brain Data. The variable for “advice selection” is coded as
-1 = false advice and 1 = true advice. All values of functional brain activity indicate average β of
BOLD signals at the peak voxel within each identified region.
(XLSX)

S3 Dataset. Functional Amygdala Data. The variable for “advice selection” is coded as
-1 = false advice and 1 = true advice. All values of functional amygdala activity indicate average
β of BOLD signals at the peak voxel within each hemisphere of the amygdala.
(XLSX)

S1 Table. Probabilities of the Computer-Programmed Partner’s Responses. In the present
study the player partner was actually performed by computer programming across all trials;
the player partner was programmed to choose true/false advice or to follow/disregard advice
with varying probabilities, depending on subjects’ response at the previous trial with details
presented in S1 Table.
(DOCX)

Acknowledgments
This research was supported by the Laureate Institute for Brain Research and the William K.
Warren Foundation. The funders had no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Author Contributions
Conceived and designed the experiments: JB FK HS MM. Performed the experiments: HS MM
JB. Analyzed the data: HS MM. Contributed reagents/materials/analysis tools: MM FK JB.
Wrote the paper: HS JB FKMM. Contributed during the whole research project, discussed
research concept and design, data acquisition, and data processing strategies: HS MM FK JB.

References
1. Das TK, Teng B-S. The risk-based view of trust: A conceptual framework. Journal of Business and Psy-

chology. 2004; 19(1):85–116.

2. De Jong BA, Dirks KT. Beyond shared perceptions of trust and monitoring in teams: Implications of
asymmetry and dissensus. Journal of Applied Psychology. 2012; 97(2):391–406. doi: 10.1037/
a0026483 PMID: 22181679

3. Lusher D, Kremer P, Robins G. Cooperative and competitive structures of trust relations in teams.
Small Group Research. 2014; 45(1):3–36. doi: 10.1177/1046496413510362

4. La Porta R, Lopez-de-Silanes F, Shleifer A, Vishny R. Trust in large organizations. American Economic
Review Papers and Proceedings. 1997; 87(2):333–8.

5. Hansen MH, Morrow JL Jr, Batista JC. The impact of trust on cooperative membership retention, perfor-
mance, and satisfaction: An exploratory study. International Food and Agribusiness Management
Review. 2002; 5:41–59.

6. Staples DS, Webster J. Exploring the effects of trust, task interdependence and virtualness on knowl-
edge sharing in teams. Information Systems Journal. 2008; 18(6):617–40. doi: 10.1111/j.1365-2575.
2007.00244.x

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0137014.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0137014.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0137014.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0137014.s004
http://dx.doi.org/10.1037/a0026483
http://dx.doi.org/10.1037/a0026483
http://www.ncbi.nlm.nih.gov/pubmed/22181679
http://dx.doi.org/10.1177/1046496413510362
http://dx.doi.org/10.1111/j.1365-2575.2007.00244.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00244.x


7. Dirks KT. The effects of interpersonal trust on work group performance. The Journal of applied psychol-
ogy. 1999; 84(3):445–55. PMID: 10380424.

8. Lambert MJ, Bergin AF. The effectiveness of psychotherapy. In: Bergin AE, Garfield SL, editors. Hand-
book of psychotherapy and behavior change. 4th edition ed. Oxford, UK: Wiley; 1994. p. 143–89.

9. Ledley DR, Marx BP, Heimberg RG. Making cognitive-behavioral theory work: Clinical process for new
practitioners. 2nd Edition ed. New York, NY: Guilford Press; 2010.

10. Winston JS, Strange BA, O'Doherty J, Dolan RJ. Automatic and intentional brain responses during
evaluation of trustworthiness of faces. Nature neuroscience. 2002; 5(3):277–83. doi: 10.1038/nn816
PMID: 11850635.

11. Engell AD, Haxby JV, Todorov A. Implicit trustworthiness decisions: automatic coding of face properties
in the human amygdala. Journal of cognitive neuroscience. 2007; 19(9):1508–19. doi: 10.1162/jocn.
2007.19.9.1508 PMID: 17714012.

12. Todorov A, Engell AD. The role of the amygdala in implicit evaluation of emotionally neutral faces.
Social cognitive and affective neuroscience. 2008; 3(4):303–12. doi: 10.1093/scan/nsn033 PMID:
19015082; PubMed Central PMCID: PMC2607057.

13. Platek SM, Krill AL, Wilson B. Implicit trustworthiness ratings of self-resembling faces activate brain
centers involved in reward. Neuropsychologia. 2009; 47(1):289–93. doi: 10.1016/j.neuropsychologia.
2008.07.018 PMID: 18761362.

14. Said CP, Baron SG, Todorov A. Nonlinear amygdala response to face trustworthiness: contributions of
high and low spatial frequency information. Journal of cognitive neuroscience. 2009; 21(3):519–28. doi:
10.1162/jocn.2009.21041 PMID: 18564045.

15. Freeman JB, Stolier RM, Ingbretsen ZA, Hehman EA. Amygdala responsivity to high-level social infor-
mation from unseen faces. The Journal of neuroscience: the official journal of the Society for Neurosci-
ence. 2014; 34(32):10573–81. doi: 10.1523/JNEUROSCI.5063-13.2014 PMID: 25100591.

16. SeeleyWW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic con-
nectivity networks for salience processing and executive control. The Journal of neuroscience: the offi-
cial journal of the Society for Neuroscience. 2007; 27(9):2349–56. doi: 10.1523/JNEUROSCI.5587-06.
2007 PMID: 17329432; PubMed Central PMCID: PMC2680293.

17. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, et al. At the heart of the ventral
attention system: the right anterior insula. Human brain mapping. 2009; 30(8):2530–41. doi: 10.1002/
hbm.20688 PMID: 19072895; PubMed Central PMCID: PMC2712290.

18. Berg J, Dickhaut J, McCabe K. Trust, receiprocity, and social history. Games and Economic Behavior.
1995; 10(1):122–42. doi: 10.1006/game.1995.1027

19. King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, Montague PR. Getting to know you: reputa-
tion and trust in a two-person economic exchange. Science. 2005; 308(5718):78–83. doi: 10.1126/
science.1108062 PMID: 15802598.

20. Delgado MR, Frank RH, Phelps EA. Perceptions of moral character modulate the neural systems of
reward during the trust game. Nature neuroscience. 2005; 8(11):1611–8. doi: 10.1038/nn1575 PMID:
16222226.

21. Moretto G, Sellitto M, di Pellegrino G. Investment and repayment in a trust game after ventromedial pre-
frontal damage. Frontiers in human neuroscience. 2013; 7:593. doi: 10.3389/fnhum.2013.00593 PMID:
24093013; PubMed Central PMCID: PMC3782646.

22. Koscik TR, Tranel D. The human amygdala is necessary for developing and expressing normal inter-
personal trust. Neuropsychologia. 2011; 49(4):602–11. doi: 10.1016/j.neuropsychologia.2010.09.023
PMID: 20920512; PubMed Central PMCID: PMC3056169.

23. van Honk J, Eisenegger C, Terburg D, Stein DJ, Morgan B. Generous economic investments after
basolateral amygdala damage. Proceedings of the National Academy of Sciences of the United States
of America. 2013; 110(7):2506–10. doi: 10.1073/pnas.1217316110 PMID: 23341614; PubMed Central
PMCID: PMC3574920.

24. Krueger F, McCabe K, Moll J, Kriegeskorte N, Zahn R, Strenziok M, et al. Neural correlates of trust. Pro-
ceedings of the National Academy of Sciences of the United States of America. 2007; 104(50):20084–
9. doi: 10.1073/pnas.0710103104 PMID: 18056800; PubMed Central PMCID: PMC2148426.

25. Krueger F, Grafman J, McCabe K. Neural correlates of economic game playing. Philosophical transac-
tions of the Royal Society of London Series B, Biological sciences. 2008; 363(1511):3859–74. doi: 10.
1098/rstb.2008.0165 PMID: 18829425; PubMed Central PMCID: PMC2581786.

26. Rode J. Truth and trust in communication: Experiments on the effect of a competitive context. Games
and Economic Behavior. 2010; 68(1):325–38. doi: 10.1016/j.geb.2009.05.008

27. Akerlof G. The market for "Lemons": Quality uncertainty and the market mechanism. Quarterly Journal
of Economics. 1970; 84(3):488–500.

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/10380424
http://dx.doi.org/10.1038/nn816
http://www.ncbi.nlm.nih.gov/pubmed/11850635
http://dx.doi.org/10.1162/jocn.2007.19.9.1508
http://dx.doi.org/10.1162/jocn.2007.19.9.1508
http://www.ncbi.nlm.nih.gov/pubmed/17714012
http://dx.doi.org/10.1093/scan/nsn033
http://www.ncbi.nlm.nih.gov/pubmed/19015082
http://dx.doi.org/10.1016/j.neuropsychologia.2008.07.018
http://dx.doi.org/10.1016/j.neuropsychologia.2008.07.018
http://www.ncbi.nlm.nih.gov/pubmed/18761362
http://dx.doi.org/10.1162/jocn.2009.21041
http://www.ncbi.nlm.nih.gov/pubmed/18564045
http://dx.doi.org/10.1523/JNEUROSCI.5063-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/25100591
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17329432
http://dx.doi.org/10.1002/hbm.20688
http://dx.doi.org/10.1002/hbm.20688
http://www.ncbi.nlm.nih.gov/pubmed/19072895
http://dx.doi.org/10.1006/game.1995.1027
http://dx.doi.org/10.1126/science.1108062
http://dx.doi.org/10.1126/science.1108062
http://www.ncbi.nlm.nih.gov/pubmed/15802598
http://dx.doi.org/10.1038/nn1575
http://www.ncbi.nlm.nih.gov/pubmed/16222226
http://dx.doi.org/10.3389/fnhum.2013.00593
http://www.ncbi.nlm.nih.gov/pubmed/24093013
http://dx.doi.org/10.1016/j.neuropsychologia.2010.09.023
http://www.ncbi.nlm.nih.gov/pubmed/20920512
http://dx.doi.org/10.1073/pnas.1217316110
http://www.ncbi.nlm.nih.gov/pubmed/23341614
http://dx.doi.org/10.1073/pnas.0710103104
http://www.ncbi.nlm.nih.gov/pubmed/18056800
http://dx.doi.org/10.1098/rstb.2008.0165
http://dx.doi.org/10.1098/rstb.2008.0165
http://www.ncbi.nlm.nih.gov/pubmed/18829425
http://dx.doi.org/10.1016/j.geb.2009.05.008


28. Nayyar PR. Information asymmetries: A source of competitive advantage for diversified service firms.
Strategic Management Journal. 1990; 11:513–9.

29. Safran J, Muran JC. Negotiating the therapeutic alliance. New York: The Guilford Press; 2000.

30. Ahn H, Wampold B. Where oh where are the specific ingredients?: A meta-analysis of component stud-
ies in counseling and psychotherapy. Journal of Counseling Psychology. 2001; 48(3):251–7.

31. Luborsky L, Barber JP, Siqueland L, McLellan AT, Woody G. Establishing a therapeutic alliance with
substance abusers. NIDA research monograph. 1997; 165:233–44. PMID: 9243553.

32. Krupnick JL, Sotsky SM, Simmens S, Moyer J, Elkin I, Watkins J, et al. The role of the therapeutic alli-
ance in psychotherapy and pharmacotherapy outcome: findings in the National Institute of Mental
Health Treatment of Depression Collaborative Research Program. Journal of consulting and clinical
psychology. 1996; 64(3):532–9. PMID: 8698947.

33. Joe GW, Simpson DD, Dansereau DF, Rowan-Szal GA. Relationships between counseling rapport
and drug abuse treatment outcomes. Psychiatric services. 2001; 52(9):1223–9. PMID: 11533397.

34. Greene JD, Paxton JM. Patterns of neural activity associated with honest and dishonest moral deci-
sions. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106
(30):12506–11. doi: 10.1073/pnas.0900152106 PMID: 19622733; PubMed Central PMCID:
PMC2718383.

35. Parks CD, Hulbert LG. High and low trusters' responses to fear in a payoff matrix. Journal of Conflict
Resolution. 1995; 39:718–30.

36. Bohnet I, Zeckhauser R. Trust, risk and betrayal. Journal of Economic Behavior & Organization. 2004;
55:467–84.

37. Crawford V, Sobel J. Strategic information transmission. Econometrica. 1982; 50(6):1431–51.

38. Gneezy U. Deception: The role of consequences. American Economic Review. 2005; 95(1):384–94.

39. Baas D, Aleman A, Vink M, Ramsey NF, de Haan EH, Kahn RS. Evidence of altered cortical and amyg-
dala activation during social decision-making in schizophrenia. NeuroImage. 2008; 40(2):719–27. doi:
10.1016/j.neuroimage.2007.12.039 PMID: 18261933.

40. Pinkham AE, Hopfinger JB, Pelphrey KA, Piven J, Penn DL. Neural bases for impaired social cognition
in schizophrenia and autism spectrum disorders. Schizophrenia research. 2008; 99(1–3):164–75. doi:
10.1016/j.schres.2007.10.024 PMID: 18053686; PubMed Central PMCID: PMC2740744.

41. Couture SM, Penn DL, Roberts DL. The functional significance of social cognition in schizophrenia: a
review. Schizophrenia bulletin. 2006; 32 Suppl 1:S44–63. doi: 10.1093/schbul/sbl029 PMID:
16916889; PubMed Central PMCID: PMC2632537.

42. Adolphs R, Sears L, Piven J. Abnormal processing of social information from faces in autism. Journal of
cognitive neuroscience. 2001; 13(2):232–40. PMID: 11244548.

43. Hooker CI, Tully LM, Verosky SC, Fisher M, Holland C, Vinogradov S. Can I trust you? Negative affec-
tive priming influences social judgments in schizophrenia. Journal of abnormal psychology. 2011; 120
(1):98–107. doi: 10.1037/a0020630 PMID: 20919787; PubMed Central PMCID: PMC3170843.

44. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Molecular psychiatry. 2001; 6(1):13–34.
Epub 2001/03/13. PMID: 11244481.

45. Whalen PJ. The uncertainty of it all. Trends in cognitive sciences. 2007; 11(12):499–500. doi: 10.1016/
j.tics.2007.08.016 PMID: 18024182.

46. Yan P, Li CS. Decreased amygdala activation during risk taking in non-dependent habitual alcohol
users: A preliminary fMRI study of the stop signal task. The American journal of drug and alcohol
abuse. 2009; 35(5):284–9. doi: 10.1080/00952990902968569 PMID: 19579091.

47. Orsini CA, Trotta RT, Bizon JL, Setlow B. Dissociable Roles for the Basolateral Amygdala and Orbito-
frontal Cortex in Decision-Making under Risk of Punishment. The Journal of neuroscience: the official
journal of the Society for Neuroscience. 2015; 35(4):1368–79. doi: 10.1523/JNEUROSCI.3586-14.
2015 PMID: 25632115; PubMed Central PMCID: PMC4308589.

48. Crowley TJ, Dalwani MS, Mikulich-Gilbertson SK, Du YP, Lejuez CW, Raymond KM, et al. Risky deci-
sions and their consequences: neural processing by boys with Antisocial Substance Disorder. PloS
one. 2010; 5(9):e12835. doi: 10.1371/journal.pone.0012835 PMID: 20877644; PubMed Central
PMCID: PMC2943904.

49. Li CS, Luo X, Yan P, Bergquist K, Sinha R. Altered impulse control in alcohol dependence: neural mea-
sures of stop signal performance. Alcoholism, clinical and experimental research. 2009; 33(4):740–50.
doi: 10.1111/j.1530-0277.2008.00891.x PMID: 19170662; PubMed Central PMCID: PMC2697053.

50. Cook KS, Yamagishi T, Cheshire C, Cooper R, Matsuda M, Mashima R. Trust building via risk taking: A
cross-societal experiment. Social Psychology Quarterly. 2005; 68(2):121–42.

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/9243553
http://www.ncbi.nlm.nih.gov/pubmed/8698947
http://www.ncbi.nlm.nih.gov/pubmed/11533397
http://dx.doi.org/10.1073/pnas.0900152106
http://www.ncbi.nlm.nih.gov/pubmed/19622733
http://dx.doi.org/10.1016/j.neuroimage.2007.12.039
http://www.ncbi.nlm.nih.gov/pubmed/18261933
http://dx.doi.org/10.1016/j.schres.2007.10.024
http://www.ncbi.nlm.nih.gov/pubmed/18053686
http://dx.doi.org/10.1093/schbul/sbl029
http://www.ncbi.nlm.nih.gov/pubmed/16916889
http://www.ncbi.nlm.nih.gov/pubmed/11244548
http://dx.doi.org/10.1037/a0020630
http://www.ncbi.nlm.nih.gov/pubmed/20919787
http://www.ncbi.nlm.nih.gov/pubmed/11244481
http://dx.doi.org/10.1016/j.tics.2007.08.016
http://dx.doi.org/10.1016/j.tics.2007.08.016
http://www.ncbi.nlm.nih.gov/pubmed/18024182
http://dx.doi.org/10.1080/00952990902968569
http://www.ncbi.nlm.nih.gov/pubmed/19579091
http://dx.doi.org/10.1523/JNEUROSCI.3586-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.3586-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25632115
http://dx.doi.org/10.1371/journal.pone.0012835
http://www.ncbi.nlm.nih.gov/pubmed/20877644
http://dx.doi.org/10.1111/j.1530-0277.2008.00891.x
http://www.ncbi.nlm.nih.gov/pubmed/19170662


51. First M. Structured Clinical Interview for DSM-IV-TR Axis I Disorders—Non-Patient Edition (SCID-I/
NP). New York, NY: New York State Psychiatric Institute; January, 2010.

52. Holt C, Laury S. Risk aversion and incentive effects. The American Economic Review. 2002; 92
(5):1644–55.

53. Tomlin D, Kayali MA, King-Casas B, Anen C, Camerer CF, Quartz SR, et al. Agent-specific responses
in the cingulate cortex during economic exchanges. Science. 2006; 312(5776):1047–50. doi: 10.1126/
science.1125596 PMID: 16709783.

54. Bodurka J, Ledden PJ, van Gelderen P, Chu R, de Zwart JA, Morris D, et al. Scalable multichannel MRI
data acquisition system. Magnetic resonance in medicine: official journal of the Society of Magnetic
Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2004; 51(1):165–71. doi: 10.
1002/mrm.10693 PMID: 14705057.

55. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Computers and biomedical research, an international journal. 1996; 29(3):162–73. PMID: 8812068.

56. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion
effects in fMRI: RETROICOR. Magnetic resonance in medicine: official journal of the Society of Mag-
netic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2000; 44(1):162–7. PMID:
10893535.

57. Talairach J, Tornoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional sys-
tem: an approach to cerebral imaging. Stuttgart: Georg Thieme; 1988. 122 p. p.

58. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-
correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical image anal-
ysis. 2008; 12(1):26–41. doi: 10.1016/j.media.2007.06.004 PMID: 17659998; PubMed Central PMCID:
PMC2276735.

59. Rissman J, Gazzaley A, D'Esposito M. Measuring functional connectivity during distinct stages of a
cognitive task. NeuroImage. 2004; 23(2):752–63. doi: 10.1016/j.neuroimage.2004.06.035 PMID:
15488425.

60. Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. Chambers J, EddyW, Hardle W,
Sheather S, Tierney L, editors. New York: Springer; 2000. 528 p.

61. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria:
The R Foundation for Statistical Computing; 2011.

62. Weller JA, Tikir A. Predicting domain-specific risk taking with the HEXACO personality structure. Jour-
nal of Behavioral Decision Making. 2011; 24:180–201. doi: 10.1002/bdm.677

63. Soane E, Dewberry C, Narendran S. The role of perceived costs and perceived benefits in the relation-
ship between personality and risk-related choices. Journal of Risk Research. 2010; 13(3):303–18. doi:
10.1080/13669870902987024

64. Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. Medial prefrontal cortices are unified
by common connections with superior temporal cortices and distinguished by input frommemory-
related areas in the rhesus monkey. The Journal of comparative neurology. 1999; 410(3):343–67.
PMID: 10404405.

65. Bachevalier J, Meunier M, Lu MX, Ungerleider LG. Thalamic and temporal cortex input to medial pre-
frontal cortex in rhesus monkeys. Experimental brain research. 1997; 115(3):430–44. PMID: 9262198.

66. Burnett S, Blakemore SJ. Functional connectivity during a social emotion task in adolescents and in
adults. The European journal of neuroscience. 2009; 29(6):1294–301. doi: 10.1111/j.1460-9568.2009.
06674.x PMID: 19302165; PubMed Central PMCID: PMC2695858.

67. Frith U, Frith CD. Development and neurophysiology of mentalizing. Philosophical transactions of the
Royal Society of London Series B, Biological sciences. 2003; 358(1431):459–73. doi: 10.1098/rstb.
2002.1218 PMID: 12689373; PubMed Central PMCID: PMC1693139.

68. Burnett S, Bird G, Moll J, Frith C, Blakemore SJ. Development during adolescence of the neural pro-
cessing of social emotion. Journal of cognitive neuroscience. 2009; 21(9):1736–50. doi: 10.1162/jocn.
2009.21121 PMID: 18823226.

69. Mahy CE, Moses LJ, Pfeifer JH. How and where: theory-of-mind in the brain. Developmental cognitive
neuroscience. 2014; 9:68–81. doi: 10.1016/j.dcn.2014.01.002 PMID: 24552989.

70. Carrington SJ, Bailey AJ. Are there theory of mind regions in the brain? A review of the neuroimaging lit-
erature. Human brain mapping. 2009; 30(8):2313–35. doi: 10.1002/hbm.20671 PMID: 19034900.

71. Gobbini MI, Koralek AC, Bryan RE, Montgomery KJ, Haxby JV. Two takes on the social brain: a com-
parison of theory of mind tasks. Journal of cognitive neuroscience. 2007; 19(11):1803–14. doi: 10.
1162/jocn.2007.19.11.1803 PMID: 17958483.

72. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nature reviews
Neuroscience. 2006; 7(4):268–77. doi: 10.1038/nrn1884 PMID: 16552413.

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 17 / 18

http://dx.doi.org/10.1126/science.1125596
http://dx.doi.org/10.1126/science.1125596
http://www.ncbi.nlm.nih.gov/pubmed/16709783
http://dx.doi.org/10.1002/mrm.10693
http://dx.doi.org/10.1002/mrm.10693
http://www.ncbi.nlm.nih.gov/pubmed/14705057
http://www.ncbi.nlm.nih.gov/pubmed/8812068
http://www.ncbi.nlm.nih.gov/pubmed/10893535
http://dx.doi.org/10.1016/j.media.2007.06.004
http://www.ncbi.nlm.nih.gov/pubmed/17659998
http://dx.doi.org/10.1016/j.neuroimage.2004.06.035
http://www.ncbi.nlm.nih.gov/pubmed/15488425
http://dx.doi.org/10.1002/bdm.677
http://dx.doi.org/10.1080/13669870902987024
http://www.ncbi.nlm.nih.gov/pubmed/10404405
http://www.ncbi.nlm.nih.gov/pubmed/9262198
http://dx.doi.org/10.1111/j.1460-9568.2009.06674.x
http://dx.doi.org/10.1111/j.1460-9568.2009.06674.x
http://www.ncbi.nlm.nih.gov/pubmed/19302165
http://dx.doi.org/10.1098/rstb.2002.1218
http://dx.doi.org/10.1098/rstb.2002.1218
http://www.ncbi.nlm.nih.gov/pubmed/12689373
http://dx.doi.org/10.1162/jocn.2009.21121
http://dx.doi.org/10.1162/jocn.2009.21121
http://www.ncbi.nlm.nih.gov/pubmed/18823226
http://dx.doi.org/10.1016/j.dcn.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24552989
http://dx.doi.org/10.1002/hbm.20671
http://www.ncbi.nlm.nih.gov/pubmed/19034900
http://dx.doi.org/10.1162/jocn.2007.19.11.1803
http://dx.doi.org/10.1162/jocn.2007.19.11.1803
http://www.ncbi.nlm.nih.gov/pubmed/17958483
http://dx.doi.org/10.1038/nrn1884
http://www.ncbi.nlm.nih.gov/pubmed/16552413


73. Sommer M, Dohnel K, Sodian B, Meinhardt J, Thoermer C, Hajak G. Neural correlates of true and false
belief reasoning. NeuroImage. 2007; 35(3):1378–84. doi: 10.1016/j.neuroimage.2007.01.042 PMID:
17376703.

74. Young L, Saxe R. The neural basis of belief encoding and integration in moral judgment. NeuroImage.
2008; 40(4):1912–20. doi: 10.1016/j.neuroimage.2008.01.057 PMID: 18342544.

75. Ciaramidaro A, Adenzato M, Enrici I, Erk S, Pia L, Bara BG, et al. The intentional network: how the
brain reads varieties of intentions. Neuropsychologia. 2007; 45(13):3105–13. doi: 10.1016/j.
neuropsychologia.2007.05.011 PMID: 17669444.

76. Lissek S, Peters S, Fuchs N, Witthaus H, Nicolas V, Tegenthoff M, et al. Cooperation and deception
recruit different subsets of the theory-of-mind network. PloS one. 2008; 3(4):e2023. doi: 10.1371/
journal.pone.0002023 PMID: 18431500; PubMed Central PMCID: PMC2295259.

77. Ganis G, Kosslyn SM, Stose S, ThompsonWL, Yurgelun-Todd DA. Neural correlates of different types
of deception: an fMRI investigation. Cerebral cortex. 2003; 13(8):830–6. PMID: 12853369.

78. O'Nions E, Sebastian CL, McCrory E, Chantiluke K, Happe F, Viding E. Neural bases of Theory of Mind
in children with autism spectrum disorders and children with conduct problems and callous-unemotional
traits. Developmental science. 2014; 17(5):786–96. doi: 10.1111/desc.12167 PMID: 24636205;
PubMed Central PMCID: PMC4316185.

79. Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Atypical frontal-posterior synchronization
of Theory of Mind regions in autism during mental state attribution. Social neuroscience. 2009; 4
(2):135–52. doi: 10.1080/17470910802198510 PMID: 18633829; PubMed Central PMCID:
PMC3086301.

80. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a "theory of mind"? Cognition. 1985; 21
(1):37–46. PMID: 2934210.

81. Broekhof E, Ketelaar L, Stockmann L, van Zijp A, Bos MG, Rieffe C. The Understanding of Intentions,
Desires and Beliefs in Young Children with Autism Spectrum Disorder. Journal of autism and develop-
mental disorders. 2015. doi: 10.1007/s10803-015-2363-3 PMID: 25636676.

82. Jaarsma P, Gelhaus P, Welin S. Living the categorical imperative: autistic perspectives on lying and
truth telling-between Kant and care ethics. Medicine, health care, and philosophy. 2012; 15(3):271–7.
doi: 10.1007/s11019-011-9363-7 PMID: 22065242.

83. Wood JN, Grafman J. Human prefrontal cortex: processing and representational perspectives. Nature
reviews Neuroscience. 2003; 4(2):139–47. doi: 10.1038/nrn1033 PMID: 12563285.

84. Braver TS, Bongiolatti SR. The role of frontopolar cortex in subgoal processing during working memory.
NeuroImage. 2002; 15(3):523–36. doi: 10.1006/nimg.2001.1019 PMID: 11848695.

85. Volz KG, Schubotz RI, von Cramon DY. Variants of uncertainty in decision-making and their neural cor-
relates. Brain research bulletin. 2005; 67(5):403–12. doi: 10.1016/j.brainresbull.2005.06.011 PMID:
16216687.

86. Whalen PJ, Shin LM, McInerney SC, Fischer H, Wright CI, Rauch SL. A functional MRI study of human
amygdala responses to facial expressions of fear versus anger. Emotion. 2001; 1(1):70–83. Epub
2003/08/05. PMID: 12894812.

87. Friston K. Ten ironic rules for non-statistical reviewers. NeuroImage. 2012; 61(4):1300–10. doi: 10.
1016/j.neuroimage.2012.04.018 PMID: 22521475.

Functional Responses to Truth Telling and Risk

PLOS ONE | DOI:10.1371/journal.pone.0137014 September 1, 2015 18 / 18

http://dx.doi.org/10.1016/j.neuroimage.2007.01.042
http://www.ncbi.nlm.nih.gov/pubmed/17376703
http://dx.doi.org/10.1016/j.neuroimage.2008.01.057
http://www.ncbi.nlm.nih.gov/pubmed/18342544
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.011
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.011
http://www.ncbi.nlm.nih.gov/pubmed/17669444
http://dx.doi.org/10.1371/journal.pone.0002023
http://dx.doi.org/10.1371/journal.pone.0002023
http://www.ncbi.nlm.nih.gov/pubmed/18431500
http://www.ncbi.nlm.nih.gov/pubmed/12853369
http://dx.doi.org/10.1111/desc.12167
http://www.ncbi.nlm.nih.gov/pubmed/24636205
http://dx.doi.org/10.1080/17470910802198510
http://www.ncbi.nlm.nih.gov/pubmed/18633829
http://www.ncbi.nlm.nih.gov/pubmed/2934210
http://dx.doi.org/10.1007/s10803-015-2363-3
http://www.ncbi.nlm.nih.gov/pubmed/25636676
http://dx.doi.org/10.1007/s11019-011-9363-7
http://www.ncbi.nlm.nih.gov/pubmed/22065242
http://dx.doi.org/10.1038/nrn1033
http://www.ncbi.nlm.nih.gov/pubmed/12563285
http://dx.doi.org/10.1006/nimg.2001.1019
http://www.ncbi.nlm.nih.gov/pubmed/11848695
http://dx.doi.org/10.1016/j.brainresbull.2005.06.011
http://www.ncbi.nlm.nih.gov/pubmed/16216687
http://www.ncbi.nlm.nih.gov/pubmed/12894812
http://dx.doi.org/10.1016/j.neuroimage.2012.04.018
http://dx.doi.org/10.1016/j.neuroimage.2012.04.018
http://www.ncbi.nlm.nih.gov/pubmed/22521475

