1,747 research outputs found
Decision Making for Inconsistent Expert Judgments Using Negative Probabilities
In this paper we provide a simple random-variable example of inconsistent
information, and analyze it using three different approaches: Bayesian,
quantum-like, and negative probabilities. We then show that, at least for this
particular example, both the Bayesian and the quantum-like approaches have less
normative power than the negative probabilities one.Comment: 14 pages, revised version to appear in the Proceedings of the QI2013
(Quantum Interactions) conferenc
From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer
A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies
Generation of Functional CLL-Specific Cord Blood CTL Using CD40-Ligated CLL APC
PMCID: PMC3526610This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Monoclonal antibodies for copper-64 PET dosimetry and radioimmunotherapy
BACKGROUND: We previously described a two-antibody model of (64)Cu radioimmunotherapy to evaluate low-dose, solid-tumor response. This model was designed to test the hypothesis that cellular internalization is critical in causing tumor cell death by mechanisms in addition to radiation damage. The purpose of the present study was to estimate radiation dosimetry for both antibodies (mAbs) using positron emission tomography (PET) imaging and evaluate the effect of internalization on tumor growth. RESULTS: Dosimetry was similar between therapy groups. Median time to tumor progression to 1 g ranged from 7–12 days for control groups and was 32 days for both treatment groups (p < 0.0001). No statistically significant difference existed between any control group or between the treatment groups. MATERIAL AND METHODS: In female nude mice bearing LS174T colon carcinoma xenografts, tumor dosimetry was calculated using serial PET images of three mice in each group of either internalizing (64)Cu-labeled DOTA-cBR96 (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) or non-internalizing (64)Cu-labeled DOTA-cT84.66 from 3 to 48 h. For the therapy study, controls (n = 10) received saline, DOTA-cBR96 or DOTA-cT84.66. Treatment animals (n = 9) received 0.890 mCi of (64)Cu-labeled DOTA-cBR96 or 0.710 mCi of (64)Cu-labeled DOTA-cT84.66. Tumors were measured daily. CONCLUSIONS: PET imaging allows the use of (64)Cu for pre-therapy calculation of tumor dosimetry. In spite of highly similar tumor dosimetry, an internalizing antibody did not improve the outcome of (64)Cu radioimmunotherapy. Radio-resistance of this tumor cell line and copper efflux may have confounded the study. Further investigations of the therapeutic efficacy of (64)Cu-labeled mAbs will focus on interaction between (64)Cu and tumor suppressor genes and copper chaperones
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Recent theories suggest that the excitations of certain quantum Hall states
may have exotic braiding statistics which could be used to build topological
quantum gates. This has prompted an experimental push to study such states
using confined geometries where the statistics can be tested. We study the
transport properties of quantum point contacts (QPCs) fabricated on a
GaAs/AlGaAs two dimensional electron gas that exhibits well-developed
fractional quantum Hall effect, including at bulk filling fraction 5/2. We find
that a plateau at effective QPC filling factor 5/2 is identifiable in point
contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5
microns. We study the temperature and dc-current-bias dependence of the 5/2
plateau in the QPC, as well as neighboring fractional and integer plateaus in
the QPC while keeping the bulk at filling factor 3. Transport near QPC filling
factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states
with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms
in this confined geometry
Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration
Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB
Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.
Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded.
Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure).
Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan
- …
