116 research outputs found

    Novel Protocol for the Chemical Synthesis of Crustacean Hyperglycemic Hormone Analogues — An Efficient Experimental Tool for Studying Their Functions

    Get PDF
    The crustacean Hyperglycemic Hormone (cHH) is present in many decapods in different isoforms, whose specific biological functions are still poorly understood. Here we report on the first chemical synthesis of three distinct isoforms of the cHH of Astacus leptodactylus carried out by solid phase peptide synthesis coupled to native chemical ligation. The synthetic 72 amino acid long peptide amides, containing L- or D-Phe3 and (Glp1, D-Phe3) were tested for their biological activity by means of homologous in vivo bioassays. The hyperglycemic activity of the D-isoforms was significantly higher than that of the L-isoform, while the presence of the N-terminal Glp residue had no influence on the peptide activity. The results show that the presence of D-Phe3 modifies the cHH functionality, contributing to the diversification of the hormone pool

    Teacher quality in the twenty first century: new lives, old truths

    Get PDF
    This chapter is based upon a keynote address to the first global teacher education summit, organised by Beijing Normal University in 2011, in which research across the world about influences which affect teachers' sense of professional identity, capacity for compassion, commitment, resilience and effectiveness long after they have graduated from their pre-service education and training programmes in universities and colleges were shared. The findings suggest that teaching pre-service students about how the conditions in which they work may enhance or diminish their capacity to teach to their best and how they might act to mediate these is a key part of the work of all teacher educators and an important focus for the work of educational researchers

    Exploring the effects of telehealth on medical human resources supply: a qualitative case study in remote regions

    Get PDF
    BACKGROUND: The availability of medical human resource supply is a growing concern for rural and remote communities in many countries. In the last decade, various telehealth experiences in Canada have highlighted the potential impact of this technology on professional practice. The purpose of this study was to explore physicians' and managers' perceptions regarding the potential of telehealth to support recruitment and retention of physicians in remote and rural regions. METHODS: A case study in Eastern Quebec was performed to explore this complex phenomenon. The analytical framework was based on two literature reviews and a Delphi study. Data were collected from semi-structured interviews with 41 physicians and 22 managers. Transcripts were produced and interview content was coded independently by two judges and validated by an expert panel. RESULTS: Interviews have highlighted the potential impact of telehealth on several factors influencing the recruitment and retention of physicians in rural and remote regions. The potential effects of telehealth on physicians' choice of practice location could be seen at the professional, organizational, educational and individual levels. For instance, telehealth could improve work satisfaction by allowing a regional on-call duty system and a better follow-up of patients. However, there are also certain limits related to telehealth, such as the fear that it would eventually replace all continuing medical education activities and onsite specialists in remoteregions. CONCLUSION: Telehealth is likely to have an impact on several factors related to medical workforce supply in remote and rural regions. However, the expected benefits will materialize if and only if this technology is properly integrated into organizations as a support to professional practice

    Knowledge systems, health care teams, and clinical practice: a study of successful change

    Get PDF
    Clinical teams are of growing importance to healthcare delivery, but little is known about how teams learn and change their clinical practice. We examined how teams in three US hospitals succeeded in making significant practice improvements in the area of antimicrobial resistance. This was a qualitative cross-case study employing Soft Knowledge Systems as a conceptual framework. The purpose was to describe how teams produced, obtained, and used knowledge and information to bring about successful change. A purposeful sampling strategy was used to maximize variation between cases. Data were collected through interviews, archival document review, and direct observation. Individual case data were analyzed through a two-phase coding process followed by the cross-case analysis. Project teams varied in size and were multidisciplinary. Each project had more than one champion, only some of whom were physicians. Team members obtained relevant knowledge and information from multiple sources including the scientific literature, experts, external organizations, and their own experience. The success of these projects hinged on the teams' ability to blend scientific evidence, practical knowledge, and clinical data. Practice change was a longitudinal, iterative learning process during which teams continued to acquire, produce, and synthesize relevant knowledge and information and test different strategies until they found a workable solution to their problem. This study adds to our understanding of how teams learn and change, showing that innovation can take the form of an iterative, ongoing process in which bits of K&I are assembled from multiple sources into potential solutions that are then tested. It suggests that existing approaches to assessing the impact of continuing education activities may overlook significant contributions and more attention should be given to the role that practical knowledge plays in the change process in addition to scientific knowledge

    A retinal code for motion along the gravitational and body axes

    Get PDF
    Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We examined the direction preferences of direction-sensitive ganglion cells (DSGCs) in flattened mouse retinas in vitro. Here we show that for each subtype of DSGC, direction preference varies topographically so as to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises or falls. Two classes of DSGCs, namely, ON-DSGCs and ON-OFF-DSGCs, share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Although retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ

    Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Get PDF
    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes

    Safety in home care: A research protocol for studying medication management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient safety is an ongoing global priority, with medication safety considered a prevalent, high-risk area of concern. Yet, we have little understanding of the supports and barriers to safe medication management in the Canadian home care environment. There is a clear need to engage the providers and recipients of care in studying and improving medication safety with collaborative approaches to exploring the nature and safety of medication management in home care.</p> <p>Methods</p> <p>A socio-ecological perspective on health and health systems drives our iterative qualitative study on medication safety with elderly home care clients, family members and other informal caregivers, and home care providers. As we purposively sample across four Canadian provinces: Alberta (AB), Ontario (ON), Quebec (QC) and Nova Scotia (NS), we will collect textual and visual data through home-based interviews, participant-led photo walkabouts of the home, and photo elicitation sessions at clients' kitchen tables. Using successive rounds of interpretive description and human factors engineering analyses, we will generate robust descriptions of managing medication at home within each provincial sample and across the four-province group. We will validate our initial interpretations through photo elicitation focus groups with home care providers in each province to develop a refined description of the phenomenon that can inform future decision-making, quality improvement efforts, and research.</p> <p>Discussion</p> <p>The application of interpretive and human factors lenses to the visual and textual data is expected to yield findings that advance our understanding of the issues, challenges, and risk-mitigating strategies related to medication safety in home care. The images are powerful knowledge translation tools for sharing what we learn with participants, decision makers, other healthcare audiences, and the public. In addition, participants engage in knowledge exchange throughout the study with the use of participatory data collection methods.</p

    Pupil Dilation to Explicit and Non-Explicit Sexual Stimuli

    Get PDF
    Pupil dilation to explicit sexual stimuli (footage of naked and aroused men or women) can elicit sex and sexual orientation differences in sexual response. If similar patterns were replicated with non-explicit sexual stimuli (footage of dressed men and women), then pupil dilation could be indicative of automatic sexual response in fully noninvasive designs. We examined this in 325 men and women with varied sexual orientations to determine whether dilation patterns to non-explicit sexual stimuli resembled those to explicit sexual stimuli depicting the same sex or other sex. Sexual orientation differences in pupil dilation to non-explicit sexual stimuli mirrored those to explicit sexual stimuli. However, the relationship of dilation to non-explicit sexual stimuli with dilation to corresponding explicit sexual stimuli was modest, and effect magnitudes were smaller with non-explicit sexual stimuli than explicit sexual stimuli. The prediction that sexual orientation differences in pupil dilation are larger in men than in women was confirmed with explicit sexual stimuli but not with non-explicit sexual stimuli

    Long-term modification of cortical synapses improves sensory perception

    Get PDF
    Synapses and receptive fields of the cerebral cortex are plastic. However, changes to specific inputs must be coordinated within neural networks to ensure that excitability and feature selectivity are appropriately configured for perception of the sensory environment. Long-lasting enhancements and decrements to rat primary auditory cortical excitatory synaptic strength were induced by pairing acoustic stimuli with activation of the nucleus basalis neuromodulatory system. Here we report that these synaptic modifications were approximately balanced across individual receptive fields, conserving mean excitation while reducing overall response variability. Decreased response variability should increase detection and recognition of near-threshold or previously imperceptible stimuli, as we found in behaving animals. Thus, modification of cortical inputs leads to wide-scale synaptic changes, which are related to improved sensory perception and enhanced behavioral performance
    • …
    corecore