220 research outputs found

    The Del1 deposition domain can immobilize 3α-hydroxysteroid dehydrogenase in the extracellular matrix without interfering with enzymatic activity

    Get PDF
    Developing methods that result in targeting of therapeutic molecules in gene therapies to target tissues has importance, as targeting can increase efficacy and decrease off target-side-effects. Work from my laboratory previously showed that the extracellular matrix protein Del1 is organized in the extracellular matrix (ECM) via the Del1 deposition domain (DDD). In this work, a fusion protein with DDD was made to assay the ability to immobilize an enzyme without disrupting enzymatic function. A prostatic cancer-derived cell line LNCap that grows in an androgen-dependent manner was used with 3α-hydroxysteroid dehydrogenase (3 αHD), which catalyzes dihydrotestosterone (DHT). Plasmids encoding a 3αHD:DDD fusion were generated and transfected into cultured cells. The effects of 3αHD immobilized in the ECM by the DDD were evaluated by monitoring growth of LNCap cells and DHT concentrations. It was demonstrated that the DDD could immobilize an enzyme in the ECM without interfering with function

    Application of affymetrix array and massively parallel signature sequencing for identification of genes involved in prostate cancer progression

    Get PDF
    BACKGROUND: Affymetrix GeneChip Array and Massively Parallel Signature Sequencing (MPSS) are two high throughput methodologies used to profile transcriptomes. Each method has certain strengths and weaknesses; however, no comparison has been made between the data derived from Affymetrix arrays and MPSS. In this study, two lineage-related prostate cancer cell lines, LNCaP and C4-2, were used for transcriptome analysis with the aim of identifying genes associated with prostate cancer progression. METHODS: Affymetrix GeneChip array and MPSS analyses were performed. Data was analyzed with GeneSpring 6.2 and in-house perl scripts. Expression array results were verified with RT-PCR. RESULTS: Comparison of the data revealed that both technologies detected genes the other did not. In LNCaP, 3,180 genes were only detected by Affymetrix and 1,169 genes were only detected by MPSS. Similarly, in C4-2, 4,121 genes were only detected by Affymetrix and 1,014 genes were only detected by MPSS. Analysis of the combined transcriptomes identified 66 genes unique to LNCaP cells and 33 genes unique to C4-2 cells. Expression analysis of these genes in prostate cancer specimens showed CA1 to be highly expressed in bone metastasis but not expressed in primary tumor and EPHA7 to be expressed in normal prostate and primary tumor but not bone metastasis. CONCLUSION: Our data indicates that transcriptome profiling with a single methodology will not fully assess the expression of all genes in a cell line. A combination of transcription profiling technologies such as DNA array and MPSS provides a more robust means to assess the expression profile of an RNA sample. Finally, genes that were differentially expressed in cell lines were also differentially expressed in primary prostate cancer and its metastases

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa

    Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells <it>in vivo</it>.</p> <p>Methods</p> <p>We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed <it>in vitro </it>and <it>in vivo </it>tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference.</p> <p>Results</p> <p>Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts <it>in vivo</it>. However, Pim1 expression enhanced the <it>in vitro </it>and <it>in vivo </it>tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes.</p> <p>Conclusion</p> <p>Our results suggest an <it>in vivo </it>role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the cell line. Pim1 promotes tumorigenicity at least in part by enhancing c-MYC transcriptional activity. We also made the novel discovery that treatment of cells with the c-MYC inhibitor 10058-F4 leads to a reduction in Pim1 protein levels.</p

    The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines

    Get PDF
    Raman spectroscopy (RS) is an optical technique that provides an objective method of pathological diagnosis based on the molecular composition of tissue. Studies have shown that the technique can accurately identify and grade prostatic adenocarcinoma (CaP) in vitro. This study aimed to determine whether RS was able to differentiate between CaP cell lines of varying degrees of biological aggressiveness. Raman spectra were measured from two well-differentiated, androgen-sensitive cell lines (LNCaP and PCa 2b) and two poorly differentiated, androgen-insensitive cell lines (DU145 and PC 3). Principal component analysis was used to study the molecular differences that exist between cell lines and, in conjunction with linear discriminant analysis, was applied to 200 spectra to construct a diagnostic algorithm capable of differentiating between the different cell lines. The algorithm was able to identify the cell line of each individual cell with an overall sensitivity of 98% and a specificity of 99%. The results further demonstrate the ability of RS to differentiate between CaP samples of varying biological aggressiveness. RS shows promise for application in the diagnosis and grading of CaP in clinical practise as well as providing molecular information on CaP samples in a research setting

    Half versus full vacuum suction drainage after modified radical mastectomy for breast cancer- a prospective randomized clinical trial[ISRCTN24484328]

    Get PDF
    BACKGROUND: Suction drains are routinely used after modified radical mastectomy and are an important factor contributing to increased hospital stay as the patients are often discharged only after their removal. Amongst various factors that influence the amount of postoperative drainage, the negative suction pressure applied to the drain has been reported to be of great significance. While a high negative suction pressure is expected to drain the collection and reduce the dead space promptly, it may also prevent the leaking lymphatics from closing and lead to increased drainage from the wound. Against this background a prospective randomized clinical study was conducted to compare the amount and duration of drainage between a half negative suction and full vacuum suction drainage in patients following modified radical mastectomy. The associated postoperative morbidity was also compared between the two groups. METHODS: 85 FNAC (fine needle aspiration cytology) proven cases of locally advanced breast cancer were randomized. (Using randomly ordered sealed envelops, which were opened immediately before the closure of the wound) in to 50 patients with full vacuum suction (pressure = 700 g/m2) and 35 cases in to half vacuum suction drainage (pressure = 350 g/m2) groups. The two groups were comparable in respect of age, weight, and technique of operation and extent of axillary dissection. Surgery was performed by the same surgical team comprising of five surgeons (two senior and three resident surgeons) using a standardized technique with electrocautery. External compression dressing was provided over the axilla for first 48 hrs and following that patients were encouraged to do active and passive shoulder exercises. The outcomes measured were postoperative morbidity and the length of hospital stay. Statistical methods used: Descriptive studies were performed with SPSS version 10 and group characteristics were compared using student t-test. RESULTS: Half vacuum suction drains were removed earlier than the full suction vacuum suction drains. There was no significant difference in the incidence of seroma formation in the two groups and there was a significant reduction in the total hospital stay in patients with half vacuum suction drainage systems as compared to the full suction drainage group (p < 0.001) without any added morbidity. CONCLUSIONS: Half negative suction drains provide an effective compromise between no suction and full or high suction drainage after modified radical mastectomy by reducing the hospital stay and the post operative morbidity including post operative seromas

    FUS/TLS Is a Co-Activator of Androgen Receptor in Prostate Cancer Cells

    Get PDF
    Androgen receptor (AR) is a member of the nuclear receptor family of transcription factors. Upon binding to androgens, AR becomes transcriptionally active to regulate the expression of target genes that harbor androgen response elements (AREs) in their promoters and/or enhancers. AR is essential for the growth and survival of prostate cancer cells and is therefore a target for current and next-generation therapeutic modalities against prostate cancer. Pathophysiologically relevant protein-protein interaction networks involving AR are, however, poorly understood. In this study, we identified the protein FUsed/Translocated in LipoSarcoma (FUS/TLS) as an AR-interacting protein by co-immunoprecipitation of endogenous proteins in LNCaP human prostate cancer cells. The hormonal response of FUS expression in LNCaP cells was shown to resemble that of other AR co-activators. FUS displayed a strong intrinsic transactivation capacity in prostate cancer cells when tethered to basal promoters using the GAL4 system. Chromatin immunoprecipitation experiments showed that FUS was recruited to ARE III of the enhancer region of the PSA gene. Data from ectopic overexpression and “knock-down” approaches demonstrated that AR transcriptional activity was enhanced by FUS. Depletion of FUS reduced androgen-dependent proliferation of LNCaP cells. Thus, FUS is a novel co-activator of AR in prostate cancer cells

    Elevated level of inhibin-α subunit is pro-tumourigenic and pro-metastatic and associated with extracapsular spread in advanced prostate cancer

    Get PDF
    The biological function of inhibin-α subunit (INHα) in prostate cancer (PCa) is currently unclear. A recent study associated elevated levels of INHα in PCa patients with a higher risk of recurrence. This prompted us to use clinical specimens and functional studies to investigate the pro-tumourigenic and pro-metastatic function of INHα. We conducted a cross-sectional study to determine a link between INHα expression and a number of clinicopathological parameters including Gleason score, surgical margin, extracapsular spread, lymph node status and vascular endothelial growth factor receptor-3 expression, which are well-established prognostic factors of PCa. In addition, using two human PCa cell lines (LNCaP and PC3) representing androgen-dependent and -independent PCa respectively, we investigated the biological function of elevated levels of INHα in advanced cancer. Elevated expression of INHα in primary PCa tissues showed a higher risk of PCa patients being positive for clinicopathological parameters outlined above. Over-expressing INHα in LNCaP and PC3 cells demonstrated two different and cell-type-specific responses. INHα-positive LNCaP demonstrated reduced tumour growth whereas INHα-positive PC3 cells demonstrated increased tumour growth and metastasis through the process of lymphangiogenesis. This study is the first to demonstrate a pro-tumourigenic and pro-metastatic function for INHα associated with androgen-independent stage of metastatic prostate disease. Our results also suggest that INHα expression in the primary prostate tumour can be used as a predictive factor for prognosis of PCa

    Targeting HOX transcription factors in prostate cancer

    Get PDF
    YesBackground: The HOX genes are a family of transcription factors that help to determine cell and tissue identity during early development, and which are also over-expressed in a number of malignancies where they have been shown to promote cell proliferation and survival. The purpose of this study was to evaluate the expression of HOX genes in prostate cancer and to establish whether prostate cancer cells are sensitive to killing by HXR9, an inhibitor of HOX function. Methods: HOX function was inhibited using the HXR9 peptide. HOX gene expression was assessed by RNA extraction from cells or tissues followed by quantitative PCR, and siRNA was used to block the expression of the HOX target gene, cFos. In vivo modelling involved a mouse flank tumour induced by inoculation with LNCaP cells. Results: In this study we show that the expression of HOX genes in prostate tumours is greatly increased with respect to normal prostate tissue. Targeting the interaction between HOX proteins and their PBX cofactor induces apoptosis in the prostate cancer derived cell lines PC3, DU145 and LNCaP, through a mechanism that involves a rapid increase in the expression of cFos, an oncogenic transcription factor. Furthermore, disrupting HOX/PBX binding using the HXR9 antagonist blocks the growth of LNCaP tumours in a xenograft model over an extended period. Conclusion: Many HOX genes are highly over-expressed in prostate cancer, and prostate cancer cells are sensitive to killing by HXR9 both in vitro and in vivo. The HOX genes are therefore a potential therapeutic target in prostate cancer.The authors gratefully acknowledge the support of the Prostate Project charity (UK)

    STEAP2 Knockdown Reduces the Invasive Potential of Prostate Cancer Cells

    Get PDF
    Six-transmembrane epithelial antigen of the prostate-2 (STEAP2) expression is increased in prostate cancer when compared to normal prostate, suggesting STEAP2 may drive prostate cancer progression. This study aimed to establish the functional role of STEAP2 in prostate tumourigenesis and evaluate if its knockdown resulted in reduced invasive potential of prostate cancer cells. PC3 and LNCaP cells were transfected with STEAP2 siRNA and proliferation, migration, invasion and gene expression analyses were performed. STEAP2 immunohistochemistry was applied to assess the protein expression and localisation according to Gleason score in 164 prostate cancer patients. Invasion significantly decreased in both cell lines following STEAP2 knockdown. PC3 proliferation and migration capacity significantly reduced, while LNCaP cell morphology and growth characteristics were altered. Additionally, STEAP2 downstream targets associated with driving invasion were identified as MMP3, MMP10, MMP13, FGFR4, IL1β, KiSS1 and SERPINE1 in PC3 cells and, MMP7 in LNCaP cells, with CD82 altered in both. In patient tissues, STEAP2 expression was significantly increased in prostate cancer samples and this significantly correlated with Gleason score. These data demonstrate that STEAP2 drives aggressive prostate cancer traits by promoting proliferation, migration and invasion and significantly influencing the transcriptional profile of ten genes underlying the metastatic cascade
    corecore