375 research outputs found
Measuring patient-perceived quality of care in US hospitals using Twitter
BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators
International Society for Disease Surveillance Conference 2010: Enhancing the Synergy Between Research, Informatics, and Practice in Public Health
Creating corroborated crisis reports from social media data through formal concept analysis
During a crisis citizens reach for their smart phones to report, comment and explore information surrounding the crisis. These actions often involve social media and this data forms a large repository of real-time, crisis related information. Law enforcement agencies and other first responders see this information as having untapped potential. That is, it has the capacity extend their situational awareness beyond the scope of a usual command and control centre. Despite this potential, the sheer volume, the speed at which it arrives, and unstructured nature of social media means that making sense of this data is not a trivial task and one that is not yet satisfactorily solved; both in crisis management and beyond. Therefore we propose a multi-stage process to extract meaning from this data that will provide relevant and near real-time information to command and control to assist in decision support. This process begins with the capture of real-time social media data, the development of specific LEA and crisis focused taxonomies for categorisation and entity extraction, the application of formal concept analysis for aggregation and corroboration and the presentation of this data via map-based and other visualisations. We demonstrate that this novel use of formal concept analysis in combination with context-based entity extraction has the potential to inform law enforcement and/or humanitarian responders about on-going crisis events using social media data in the context of the 2015 Nepal earthquake.
Keywords : formal concept analysis, crisis management, disaster response, visualisation, entity extraction
Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests
Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China
published_or_final_versio
Participatory Epidemiology: Use of Mobile Phones for Community-Based Health Reporting
Clark Freifeld and colleagues discuss mobile applications, including their own smartphone application, that show promise for health monitoring and information sharing
Mast Cells Express 11 beta-hydroxysteroid Dehydrogenase Type 1: A Role in Restraining Mast Cell Degranulation:a role in restraining mast cell degranulation
Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses
Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen
Background
Landscape structure can affect pathogen prevalence and persistence with consequences for human and animal health. Few studies have examined how reservoir host species traits may interact with landscape structure to alter pathogen communities and dynamics. Using a landscape of islands and mainland sites we investigated how natural landscape fragmentation affects the prevalence and persistence of the zoonotic tick-borne pathogen complex Borrelia burgdorferi(sensu lato), which causes Lyme borreliosis. We hypothesized that the prevalence of B. burgdorferi (s.l.) would be lower on islands compared to the mainland and B. afzelii, a small mammal specialist genospecies, would be more affected by isolation than bird-associated B. garinii and B. valaisiana and the generalist B. burgdorferi (sensu stricto).
Methods
Questing (host-seeking) nymphal I. Ricinus ticks (n = 6567) were collected from 12 island and 6 mainland sites in 2011, 2013 and 2015 and tested for B. burgdorferi(s.l.). Deer abundance was estimated using dung transects.
Results
The prevalence of B. burgdorferi (s.l.) was significantly higher on the mainland (2.5%, 47/1891) compared to island sites (0.9%, 44/4673) (P < 0.01). While all four genospecies of B. burgdorferi (s.l.) were detected on the mainland, bird-associated species B. garinii and B. valaisiana and the generalist genospecies B. burgdorferi(s.s.) predominated on islands.
Conclusion
We found that landscape structure influenced the prevalence of a zoonotic pathogen, with a lower prevalence detected among island sites compared to the mainland. This was mainly due to the significantly lower prevalence of small mammal-associated B. afzelii. Deer abundance was not related to pathogen prevalence, suggesting that the structure and dynamics of the reservoir host community underpins the observed prevalence patterns, with the higher mobility of bird hosts compared to small mammal hosts leading to a relative predominance of the bird-associated genospecies B. garinii and generalist genospecies B. burgdorferi (s.s.) on islands. In contrast, the lower prevalence of B. afzelii on islands may be due to small mammal populations there exhibiting lower densities, less immigration and stronger population fluctuations. This study suggests that landscape fragmentation can influence the prevalence of a zoonotic pathogen, dependent on the biology of the reservoir host
Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile Virus in Greece
West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence
Decision Support System for the Response to Infectious Disease Emergencies Based on WebGIS and Mobile Services in China
Background: For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Methodology/Principal Findings: Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. Conclusions/Significance: The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts
- …
