54 research outputs found

    Eta Carinae and the Luminous Blue Variables

    Full text link
    We evaluate the place of Eta Carinae amongst the class of luminous blue variables (LBVs) and show that the LBV phenomenon is not restricted to extremely luminous objects like Eta Car, but extends luminosities as low as log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses as low as ~10-15 Msun. We present a census of S Doradus variability, and discuss basic LBV properties, their mass-loss behaviour, and whether at maximum light they form pseudo-photospheres. We argue that those objects that exhibit giant Eta Car-type eruptions are most likely related to the more common type of S Doradus variability. Alternative atmospheric models as well as sub-photospheric models for the instability are presented, but the true nature of the LBV phenomenon remains as yet elusive. We end with a discussion on the evolutionary status of LBVs - highlighting recent indications that some LBVs may be in a direct pre-supernova state, in contradiction to the standard paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova imposters" (eds R. Humphreys and K. Davidson) new version submitted to Springe

    The Bipolar X-Ray Jet of the Classical T Tauri Star DG Tau

    Get PDF
    This is the author accepted manuscript. The final version is available from the Astronomical Society of the Pacific via the link in this record16th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, 28 August-3 September 2010, Seattle, USAWe report on new X-ray observations of the classical T Tauri star DG Tau. DG Tau drives a collimated bi-polar jet known to be a source of X-ray emission perhaps driven by internal shocks. The rather modest extinction permits study of the jet system to distances very close to the star itself. Our initial results presented here show that the spatially resolved X-ray jet has been moving and fading during the past six years. In contrast, a stationary, very soft source much closer (≈ 0.15 − 0.2 ′′) to the star but apparently also related to the jet has brightened during the same period. We report accurate temperatures and absorption column densities toward this source, which is probably associated with the jet base or the jet collimation region.Swiss National Science Foundatio

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.</p> <p>Results</p> <p>Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC<sub>50 </sub>values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.</p> <p>Conclusion</p> <p>Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.</p

    On the structure of the transition disk around TW Hydrae

    No full text
    Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Aims: Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. Methods: A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results: Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 mum) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. Conclusions: The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.status: publishe
    corecore