53 research outputs found
The effective population size of malaria mosquitoes: large impact of vector control.
Malaria vectors in sub-Saharan Africa have proven themselves very difficult adversaries in the global struggle against malaria. Decades of anti-vector interventions have yielded mixed results--with successful reductions in transmission in some areas and limited impacts in others. These varying successes can be ascribed to a lack of universally effective vector control tools, as well as the development of insecticide resistance in mosquito populations. Understanding the impact of vector control on mosquito populations is crucial for planning new interventions and evaluating existing ones. However, estimates of population size changes in response to control efforts are often inaccurate because of limitations and biases in collection methods. Attempts to evaluate the impact of vector control on mosquito effective population size (N(e)) have produced inconclusive results thus far. Therefore, we obtained data for 13-15 microsatellite markers for more than 1,500 mosquitoes representing multiple time points for seven populations of three important vector species--Anopheles gambiae, An. melas, and An. moucheti--in Equatorial Guinea. These populations were exposed to indoor residual spraying or long-lasting insecticidal nets in recent years. For comparison, we also analyzed data from two populations that have no history of organized vector control. We used Approximate Bayesian Computation to reconstruct their demographic history, allowing us to evaluate the impact of these interventions on the effective population size. In six of the seven study populations, vector control had a dramatic impact on the effective population size, reducing N(e) between 55%-87%, the exception being a single An. melas population. In contrast, the two negative control populations did not experience a reduction in effective population size. This study is the first to conclusively link anti-vector intervention programs in Africa to sharply reduced effective population sizes of malaria vectors
Detecting the Doubt Effect and Subjective Beliefs Using Neural Networks and Observers’ Pupillary Responses
Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon
Mapping co-ancestry connections between the genome of a Medieval individual and modern Europeans
Historical genetic links among similar populations can be difficult to establish. Identity by descent (IBD) analyses find genomic blocks that represent direct genealogical relationships among individuals. However, this method has rarely been applied to ancient genomes because IBD stretches are progressively fragmented by recombination and thus not recognizable after few tens of generations. To explore such genealogical relationships, we estimated long IBD blocks among modern Europeans, generating networks to uncover the genetic structures. We found that Basques, Sardinians, Icelanders and Orcadians form, each of them, highly intraconnected sub-clusters in a European network, indicating dense genealogical links within small, isolated populations. We also exposed individual genealogical links -such as the connection between one Basque and one Icelandic individual- that cannot be uncovered with other, widely used population genetics methods such as PCA or ADMIXTURE. Moreover, using ancient DNA technology we sequenced a Late Medieval individual (Barcelona, Spain) to high genomic coverage and identified IBD blocks shared between her and modern Europeans. The Medieval IBD blocks are statistically overrepresented only in modern Spaniards, which is the geographically closest population. This approach can be used to produce a fine-scale reflection of shared ancestry across different populations of the world, offering a direct genetic link from the past to the present.This research was supported by a PGC2018-0955931-B-100 grant (MCIU/AEI/FEDER, UE) of Spain to C.L.-F., by a grant from MINECO (FIS2016-77447-R) to S.C. and by 2017SGR 00622 grant from Generalitat de Catalunya’s Agency (AGAUR) to S.C. Sequences from the Medieval genome are deposited at the European Nucleotide Archives under accession number PRJEB33120
- …
