78 research outputs found

    An Aquaculture-Based Method for Calibrated Bivalve Isotope Paleothermometry

    Get PDF
    To quantify species- specific relationships between bivalve carbonate isotope geochemistry ( delta O-18(c)) and water conditions ( temperature and salinity, related to water isotopic composition [delta O-18(w)]), an aquaculture-based methodology was developed and applied to Mytilus edulis ( blue mussel). The four- by- three factorial design consisted of four circulating temperature baths ( 7, 11, 15, and 19 degrees C) and three salinity ranges ( 23, 28, and 32 parts per thousand ( ppt); monitored for delta O-18(w) weekly). In mid- July of 2003, 4800 juvenile mussels were collected in Salt Bay, Damariscotta, Maine, and were placed in each configuration. The size distribution of harvested mussels, based on 105 specimens, ranged from 10.9 mm to 29.5 mm with a mean size of 19.8 mm. The mussels were grown in controlled conditions for up to 8.5 months, and a paleotemperature relationship based on juvenile M. edulis from Maine was developed from animals harvested at months 4, 5, and 8.5. This relationship [ T degrees C = 16.19 (+/- 0.14) - 4.69 (+/- 0.21) {delta O-18(c) VPBD - delta O-18(w) VSMOW} + 0.17 (+/- 0.13) {delta O-18(c) VPBD - delta O-18(w) VSMOW}(2); r(2) = 0.99; N = 105; P \u3c 0.0001] is nearly identical to the Kim and O\u27Neil ( 1997) abiogenic calcite equation over the entire temperature range ( 7 - 19 degrees C), and it closely resembles the commonly used paleotemperature equations of Epstein et al. ( 1953) and Horibe and Oba ( 1972). Further, the comparison of the M. edulis paleotemperature equation with the Kim and O\u27Neil ( 1997) equilibrium- based equation indicates that M. edulis specimens used in this study precipitated their shell in isotopic equilibrium with ambient water within the experimental uncertainties of both studies. The aquaculture- based methodology described here allows similar species- specific isotope paleothermometer calibrations to be performed with other bivalve species and thus provides improved quantitative paleoenvironmental reconstructions

    The effects of environment on Arctica islandica shell formation and architecture

    Get PDF
    Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly understood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and interpretation of individual environmental signals (e.g., water temperature) often is particularly difficult. Additional proxies not influenced by multiple environmental variables or animal physiology would be a great asset in the field of paleoclimatology. The aim of this study is to investigate the potential use of structural properties of Arctica islandica shells as an environmental proxy. A total of 11 specimens were analyzed to study if changes of the microstructural organization of this marine bivalve are related to environmental conditions. In order to limit the interference of multiple parameters, the samples were cultured under controlled conditions. Three specimens presented here were grown at two different water temperatures (10 and 15 °C) for multiple weeks and exposed only to ambient food conditions. An additional eight specimens were reared under three different dietary regimes. Shell material was analyzed with two techniques; (1) confocal Raman microscopy (CRM) was used to quantify changes of the orientation of microstructural units and pigment distribution, and (2) scanning electron microscopy (SEM) was used to detect changes in microstructural organization. Our results indicate that A. islandica microstructure is not sensitive to changes in the food source and, likely, shell pigment are not altered by diet. However, seawater temperature had a statistically significant effect on the orientation of the biomineral. Although additional work is required, the results presented here suggest that the crystallographic orientation of biomineral units of A. islandica may serve as an alternative and independent proxy for seawater temperature

    Experimental Determination of Salinity, Temperature, Growth, and Metabolic Effects on Shell Isotope Chemistry of Mytilus edulis Collected from Maine and Greenland

    Get PDF
    To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p \u3c 0.0001]. Compared to the Kim and O\u27Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean

    The Marine Radiocarbon Bomb Pulse across the Temperate North Atlantic: A Compilation of Δ14C Time Histories from Arctica islandica Growth Increments

    Get PDF
    Marine radiocarbon bomb-pulse time histories of annually resolved archives from temperate regions have been underexploited. We present here series of Δ14C excess from known-age annual increments of the long-lived bivalve mollusk Arctica islandica from 4 sites across the coastal North Atlantic (German Bight, North Sea; Troms⊘, north Norway; Siglufjordur, north Icelandic shelf; Grimsey, north Icelandic shelf) combined with published series from Georges Bank and Sable Bank (NW Atlantic) and the Oyster Ground (North Sea). The atmospheric bomb pulse is shown to be a step-function whose response in the marine environment is immediate but of smaller amplitude and which has a longer decay time as a result of the much larger marine carbon reservoir. Attenuation is determined by the regional hydrographic setting of the sites, vertical mixing, processes controlling the isotopic exchange of 14C at the air-sea boundary, 14C content of the freshwater flux, primary productivity, and the residence time of organic matter in the sediment mixed layer. The inventories form a sequence from high magnitude-early peak (German Bight) to low magnitude-late peak (Grimsey). All series show a rapid response to the increase in atmospheric Δ14C excess but a slow response to the subsequent decline resulting from the succession of rapid isotopic air-sea exchange followed by the more gradual isotopic equilibration in the mixed layer due to the variable marine carbon reservoir and incorporation of organic carbon from the sediment mixed layer. The data constitute calibration scries for the use of the bomb pulse as a high-resolution dating tool in the marine environment and as a tracer of coastal ocean water masses

    Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China

    Get PDF
    The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic nuclide 14C, total solar irradiance (TSI) and sunspot number (SN) at multi-decadal to centennial timescales. Further cross-wavelet analyses between our calcite δ18O and atmospheric 14C show statistically strong coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar activities in modulating AM changes at those timescales. Our result has further indicated a better correlation between our calcite δ18O record and atmospheric 14C than between our record and TSI. This better correlation may imply that the Sun–monsoon connection is dominated most likely by cosmic rays and oceanic circulation (both associated to atmospheric 14C), instead of the direct solar heating (TSI)

    A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles

    Get PDF
    Close coupling of Iberian hydroclimate and North Atlantic sea surface temperature (SST) during recent glacial periods has been identified through the analysis of marine sediment and pollen grains co-deposited on the Portuguese continental margin. While offering precisely correlatable records, these time series have lacked a directly dated, site-specific record of continental Iberian climate spanning multiple glacial cycles as a point of comparison. Here we present a high-resolution, multi-proxy (growth dynamics and delta C-13, delta O-18, and delta U-234 values) composite stalagmite record of hydroclimate from two caves in western Portugal across the majority of the last two glacial cycles (similar to 220 ka). At orbital and millennial scales, stalagmite-based proxies for hydroclimate proxies covaried with SST, with elevated delta C-13, delta O-18, and delta U-234 values and/or growth hiatuses indicating re-duced effective moisture coincident with periods of lowered SST during major ice-rafted debris events, in agreement with changes in palynological reconstructions of continental climate. While in many cases the Portuguese stalagmite record can be scaled to SST, in some intervals the magnitudes of stalagmite isotopic shifts, and possibly hydroclimate, appear to have been somewhat decoupled from SST.Agência financiadora / Número do subsídio Center for Global and Regional Environmental Research, Cornell College US National Science Foundation BCS-1118155 BCS-1118183 AGS-1804132 IGESPAR Associacao de Estudos Subterraneos e Defesa do Ambienteinfo:eu-repo/semantics/publishedVersio

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset
    • …
    corecore