584 research outputs found

    Intellectual Property and Public Health – A White Paper

    Get PDF
    On October 26, 2012, the University of Akron School of Law’s Center for Intellectual Property and Technology hosted its Sixth Annual IP Scholars Forum. In attendance were thirteen legal scholars with expertise and an interest in IP and public health who met to discuss problems and potential solutions at the intersection of these fields. This report summarizes this discussion by describing the problems raised, areas of agreement and disagreement between the participants, suggestions and solutions made by participants and the subsequent evaluations of these suggestions and solutions. Led by the moderator, participants at the Forum focused generally on three broad questions. First, are there alternatives to either the patent system or specific patent doctrines that can provide or help provide sufficient incentives for health-related innovation? Second, is health information being used proprietarily and if so, is this type of protection appropriate? Third, does IP conflict with other non-IP values that are important in health and how does or can IP law help resolve these conflicts? This report addresses each of these questions in turn

    HoneyPAKEs

    Get PDF
    We combine two security mechanisms: using a Password-based Authenticated Key Establishment (PAKE) protocol to protect the password for access control and the Honeywords construction of Juels and Rivest to detect loss of password files. The resulting construction combines the properties of both mechanisms: ensuring that the password is intrinsically protected by the PAKE protocol during transmission and the Honeywords mechanisms for detecting attempts to exploit a compromised password file. Our constructions lead very naturally to two factor type protocols. An enhanced version of our protocol further provides protection against a compromised login server by ensuring that it does not learn the index to the true password

    Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells

    Get PDF
    Angiogenesis is considered a hallmark of multiple myeloma (MM) progression. In the present study, we evaluated the morphological and functional features of endothelial cells (ECs) derived from bone marrow (BM) of patients affected by MM (MMECs). We found that MMECs compared with normal BM ECs (BMECs) showed increased expression of syndecan-1. Silencing of syndecan-1 expression by RNA interference technique decreased in vitro EC survival, proliferation and organization in capillary-like structures. In vivo, in severe combined immunodeficient mice, syndecan-1 silencing inhibited MMEC organization into patent vessels. When overexpressed in human umbilical vein ECs and BMECs, syndecan-1 induced in vitro and in vivo angiogenic effects. Flow-cytometric analysis of MMECs silenced for syndecan-1 expression indicated a decreased membrane expression of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2). Immunoprecipitation and confocal analysis showed colocalization of VEGFR-2 with syndecan-1. Absence of nuclear translocation of VEGFR-2 in syndecan-1-knockdown cells together with the shift from perinuclear localization to recycling compartments suggest a role of syndecan-1 in modulation of VEGFR-2 localization. This correlated with an in vitro decreased VEGF-induced invasion and motility. These results suggest that syndecan-1 may contribute to the highly angiogenic phenotype of MMECs by promoting EC proliferation, survival and modulating VEGF–VEGFR-2 signalling

    Intellectual Property and Public Health - A White Paper

    Get PDF
    On October 26, 2012, The University of Akron School of Law\u27s Center for Intellectual Property and Technology hosted its Sixth Annual IP Scholars Forum. In attendance were thirteen legal scholars with expertise and an interest in IP and public health who met to discuss problems and potential solutions at the intersection of these fields. This report summarizes this discussion by describing the problems raised, areas of agreement and disagreement between the participants, suggestions and solutions made by participants, and the subsequent evaluations of these suggestions and solutions. Led by the moderator, participants at the Forum focused generally on three broad questions. First, are there alternatives to the patent system or specific patent doctrines that can provide or help provide sufficient incentives for health-related innovation? Second, is health information being used proprietarily, and if so, is this use appropriate? Third, does IP conflict with other non-IP values that are important in health, and how does or how can IP law help resolve these conflicts? This report addresses each of these questions in turn

    Intellectual Property and Public Health – A White Paper

    Get PDF
    On October 26, 2012, the University of Akron School of Law’s Center for Intellectual Property and Technology hosted its Sixth Annual IP Scholars Forum. In attendance were thirteen legal scholars with expertise and an interest in IP and public health who met to discuss problems and potential solutions at the intersection of these fields. This report summarizes this discussion by describing the problems raised, areas of agreement and disagreement between the participants, suggestions and solutions made by participants and the subsequent evaluations of these suggestions and solutions. Led by the moderator, participants at the Forum focused generally on three broad questions. First, are there alternatives to either the patent system or specific patent doctrines that can provide or help provide sufficient incentives for health-related innovation? Second, is health information being used proprietarily and if so, is this type of protection appropriate? Third, does IP conflict with other non-IP values that are important in health and how does or can IP law help resolve these conflicts? This report addresses each of these questions in turn

    Energy-Momentum Tensor of Cosmological Fluctuations during Inflation

    Full text link
    We study the renormalized energy-momentum tensor (EMT) of cosmological scalar fluctuations during the slow-rollover regime for chaotic inflation with a quadratic potential and find that it is characterized by a negative energy density which grows during slow-rollover. We also approach the back-reaction problem as a second-order calculation in perturbation theory finding no evidence that the back-reaction of cosmological fluctuations is a gauge artifact. In agreement with the results on the EMT, the average expansion rate is decreased by the back-reaction of cosmological fluctuations.Comment: 19 pages, no figures.An appendix and references added, conclusions unchanged, version accepted for publication in PR

    Energy-Momentum Tensor of Field Fluctuations in Massive Chaotic Inflation

    Get PDF
    We study the renormalized energy-momentum tensor (EMT) of the inflaton fluctuations in rigid space-times during the slow-rollover regime for chaotic inflation with a mass term. We use dimensional regularization with adiabatic subtraction and introduce a novel analytic approximation for the inflaton fluctuations which is valid during the slow-rollover regime. Using this approximation we find a scale invariant spectrum for the inflaton fluctuations in a rigid space-time, and we confirm this result by numerical methods. The resulting renormalized EMT is covariantly conserved and agrees with the Allen-Folacci result in the de Sitter limit, when the expansion is exactly linearly exponential in time. We analytically show that the EMT tensor of the inflaton fluctuations grows initially in time, but saturates to the value H^2 H(0)^2, where H is the Hubble parameter and H(0) is its value when inflation has started. This result also implies that the quantum production of light scalar fields (with mass smaller or equal to the inflaton mass) in this model of chaotic inflation depends on the duration of inflation and is larger than the usual result extrapolated from the de Sitter result.Comment: revtex style, 24 pages, 6 eps figures Numerical checks added and moduli section improve

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    The Interstellar Environment of our Galaxy

    Get PDF
    We review the current knowledge and understanding of the interstellar medium of our galaxy. We first present each of the three basic constituents - ordinary matter, cosmic rays, and magnetic fields - of the interstellar medium, laying emphasis on their physical and chemical properties inferred from a broad range of observations. We then position the different interstellar constituents, both with respect to each other and with respect to stars, within the general galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
    • …
    corecore