
HoneyPAKEs

José Becerra1, Peter B Rønne1, Peter Y A Ryan1, Petra Sala1,2

1 University of Luxembourg
Esch-sur-Alzette, Luxembourg

2 École Normale Supérieure, Computer Science Department,
Paris, France

{jose.becerra,peter.roenne,peter.ryan,petra.sala}@uni.lu

Abstract. We combine two security mechanisms: using a Password-
based Authenticated Key Establishment (PAKE) protocol to protect the
password for access control and the Honeywords construction of Juels and
Rivest to detect loss of password files. The resulting construction com-
bines the properties of both mechanisms: ensuring that the password
is intrinsically protected by the PAKE protocol during transmission and
the Honeywords mechanisms for detecting attempts to exploit a compro-
mised password file. Our constructions lead very naturally to two factor
type protocols. An enhanced version of our protocol further provides pro-
tection against a compromised login server by ensuring that it does not
learn the index to the true password.

1 Introduction

In this paper we propose combining two existing security mechanisms in
order to obtain the benefits of both. On the one hand, Password-based
Authenticated Key Establishment (PAKE) style constructions have been
used as a way to protect the password during the execution of an access
control protocol. The password is thus protected by the protocol rather
than having to rely on the establishment of a secure channel, e.g. SSL,
with the attendant dangers of Phishing attacks, etc. On the other hand,
Juels and Rivest proposed in [1] the idea of Honeywords, as a way of
raising an alert when an attacker tries to exploit a stolen password file.
The idea here is, rather than just storing the (hash of the) password for
each user, it is stored at a random position in a list of (hashed) decoy
honeywords. The indices indicating the position in the list of the real
password is stored in a separate, hardened device called the Honeychecker.
Someone obtaining the password file does not know which is the real
password and so if he tries to login as the user, he will have to take a
guess as to which is the real password. If he guesses wrong, this is detected
and is a clear indication of compromise of the password file and alerts can
be raised and remedial actions taken, i.e. updating passwords etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/163092838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Achieving a combined protocol gives rise to the idea of a secondary
password, which in turn leads to a very natural, two-factor instantiation.
A further elaboration of the protocol serves to counter the corrupted login
server problem, i.e. prevents the server learning the Honey-index.

1.1 Our Contribution

Building on the idea of Juels and Rivest [1] we propose a new protocol
model called HoneyPAKE, by merging the design of PAKE with Honey-
words, with a goal to add an additional shield for passwords. The proposed
protocols are not trying to prevent an attacker compromising the server
and stealing the file of hashed passwords, but to detect such malicious
behavior and act accordingly, e.g. raising the silent alarm to the adminis-
trator. The alarm raiser would be an additional, secure, simple hardware,
Honeychecker.

1.2 Organization of the Paper

The rest of the paper is organized as follows: in Section 2, we introduce
PAKE protocols and a motivation for proposed models and describe the
case of access control based on PAKE protocol with an example. In Sec-
tion 3 we give definitions and descriptions of honeywords along with the
importance of properly generating them and define a role of a honey-
checker. In Section 4 we lay out the security model and discuss possible
constructions of HoneyPAKEs. Section 5 gives an example of how to in-
clude authentication of the login server to the client. Finally in Section
6, we conclude our work.

2 Password-based Authenticated Key Establishment
Protocols

Here we briefly describe the design principles of PAKE protocols. A com-
prehensive survey of PAKEs can be found in Chapter 40 of [2]. Many
PAKEs are based on the Diffie-Hellman or similar key-establishment
mechanism, with the difference that the resulting session key is a func-
tion not only of the fresh random values, but also of the shared password.
Thus, if the two parties do indeed share a common password then the re-
sulting keys computed by both parties should agree. Such protocols have
to be carefully designed to avoid introducing possibilities of off-line dic-
tionary attacks, i.e. providing an attacker, either active or passive, with
enough information to test guesses at the password off-line, at his leisure.

The key establishment with a PAKE is often followed by a form of
key confirmation, which will provide explicit authentication if the codes
agree. For access control we will need such a mechanism at any rate to
authenticate the client to the server. It may be useful to also authenticate
the server to the client.

PPK

A rather elegant protocol, and the one that we will base our construc-
tion on, is the PPK protocol due to MacKenzie and Boyko [3], here in
simplified form for illustration (H denotes a suitable mapping from the
password space to the DH group):

A→ B : X := H(sA) · gx

B → A : Y := H(sB) · gy

A computes KA := (Y/H(sA))x and B computes KB := (X/H(sB))y.
These keys match in an honest run if the passwords sA and sB match.

On-line guessing attacks are of course always possible against PAKEs,
but observe that here if an active attacker masquerading as one of the
parties makes an incorrect guess at the password then the key computed
by the legitimate party will be masked by a non-identity term raised
to the DH random. This foils off-line dictionary attack against terms
observed during the protocol, and any subsequent key confirmation steps
or communications encrypted by the legitimate parties.

2.1 PAKE-based Access control

PAKEs were principally designed as a way to establish secure channels,
but the underlying mechanism can be used to protect the password during
transmission in an access control protocol. The key confirmation mecha-
nism can be used to authenticate the client to the server.

Thus, for example we might adapt PPK to provide authentication of
C to S:

C → S : ReqC , X := H(sA) · gx

S → C : Y := H(sB) · gy

C → S : H2(KC)

S confirms that H2(KS) = H2(KC), where H2 is a hash function from
the group to a compression space.

Notice that we inherit the off-line dictionary attack resistance of the
PAKE when we base access control on a PAKE. Thus an attacker mas-
querading as the login server S will not gain any useful information about
the password. This is in contrast to a conventional login protocol where
the user’s password, possibly hashed, will be revealed to such an attacker.

Remark. In the client-server scenario, the server stores the file F contain-
ing password related information. It is desired that the passwords in F are
hashed with a random salt to prevent attacks where the pre-computation
of possible passwords immediately discloses the passwords in clear after
the leakage of the file F , e.g. using previously computed rainbow tables.
However, since integrating salted passwords with PAKEs is not entirely
straightforward, either i) PAKEs do not use salted passwords or ii) the
server sends the salt value in clear to the client during the login. Recently
Jarecki et al. [4] proposed a general transformation of PAKE protocols
to make them secure against pre-computation attacks using an Oblivious
PRF. This method could also be applied in our setting.

3 Honeywords

Stealing a password file clearly compromises any access control mecha-
nism that uses it. The first step to counter this threat is the well-known
idea of storing not the raw passwords but rather crypto hashes of the
passwords. Now, when the AC server receives an access request for a
user with a password it computes the hash of the given password and
checks that this agrees with the stored hash. The effectiveness of this
counter-measure has diminished as password cracking tools have become
more powerful, such as the use of rainbow tables and increasing number
of brute-forcing algorithms. Incorporating salt into the hashes and using
slower hash functions helps a bit but still does not prevent a determined
attacker who obtains a password file from extracting the passwords. It
thus seems inevitable that password files will be compromised.

Ways to distribute shares of the passwords across several remote
servers have been proposed in [5,6] as a way to make the compromise
of such files harder, but even this will not guarantee the security of the
passwords. Additionally, it would require network infrastructure for pass-
word management, and in this paper we want to omit such difficulty.

The first ones who tackled the problem of password file theft were
Bojinov et al. in [7] where the mention of honeywords first appeared.
Honeywords were decoys of passwords proposed to set a trap for the at-

tacker who steals a database of passwords to obtain users credentials. The
authors in [7] built a theft-resistant system that generate decoy password
sets and forces the attacker to perform a great deal of on-line attempts,
which major websites would detect and inhibit.

Where Bojinov et al. left off, Juels and Rivest continued in [1] and
came up with a very simple but effective way to mitigate the effects of
password file compromise: not to prevent but rather to detect and perhaps
deter exploitation of such a compromise. Instead of storing just the single,
correct password, sugarword, against the user Id, we store it alongside
a number of decoy honeywords. Together sugarword and honeywords are
called sweetwords. The real password will be placed at an arbitrary point
in the list and this position is not stored in the file.

Logging in is similar to the standard mechanism: the user C provides a
putative password and the Server (S) computes the hash of this, but now
it tries to match this against each of the stored hashes. If the proffered
password is valid then the server should find a match and it now sends
the index of the matching term to the Honeychecker (HC). If S finds
no match, it will typically notify C that the password is incorrect. The
HC should be a separate device linked only to S by a minimal channel
able to carry only values of type Index. HC stores the correct index for
each user and if the index provided by S is correct for the user it will
authorize access. If the index is incorrect then this indicates that, most
likely, an attacker is attempting to login as C using information obtained
from a compromised password file. The protocol is thus not fail-safe, but
upon intrusion we can let it fail-deadly. Figure 1 illustrates the original
Honeywords proposal of Jules and Rivest.

Fig. 1. The Honeywords system of [1] is composed of the Honeychecker, the Server and
Client.

The proposal of Juels and Rivest requires the following assumptions:

– A secure channel between Client and Server to prevent an eavesdrop-
per from obtaining the client’s password during the authentication
phase. In practice, this is typically implemented via TLS connection,
however, it is vulnerable to phishing attacks. In this work we aim to
eliminate this requirement with the help of PAKE-based access control
mechanisms.

– Flatness on the honey words to ensure that they look plausible alter-
natives to the real password, i.e. an attacker trying to exploit a stolen
password file does not have a better than 1/k chance of guessing the
true password, where k is the number of sweetwords for that user. We
refer to [7,1] for further details about honeywords generation.

4 HoneyPAKE

Consider the scenario where a client C would like to login to server S using
his password as means of authentication. We introduce a mechanism that
integrates a PAKE protocol into the Honeywords proposal of Juels and
Rivest as shown in Figure 2. The resulting system benefits of the security
guarantees offered by underlying primitives. More concretely, the idea is
i) to detect whenever the password file stored at the Server has been
compromised and ii) protect the client’s password during its transmission
to the Server.

Fig. 2. HoneyPAKE system. The client wants to use the Resource. After running the
HoneyPAKE protocol with the login server S, the client can access the resource. The
credential shared between the Resource and C can be the output of the HoneyPAKE.

4.1 The Naive Approach

Incorporating the honeywords idea into PAKEs is not entirely straight-
forward because S does not know which (hashed) honeyword to use when
running the protocol. The simplest way to address this is simply to have
S not inject any password hash term into the exchanged terms:

C → S : ReqC

S → C : YS := gy

C now computes KC := (YS)x and ZC := H2(KC) and sends the following
back to S:

C → S : XC := H(wC) · gx , ZC

Now S computes, for i ∈ {1, · · · , k}

Wi := H2((XC/H(wi
S))y)

and compares with ZC to find the correct hashed password.
However, this allows an attacker masquerading as S to launch an off-

line dictionary attack: computing Wi for guesses at the password wi
S until

he finds a match. A slightly less naive approach is to just run the PPK
protocol k times and find a match in one of the runs. This is clearly rather
inefficient, tedious for the user and could leak the index.

We consider an alternative approach: we introduce a secondary pass-
word known to both parties.

4.2 Technical Description of Components

We consider a system with three components: Clients, Server and Hon-
eychecker which we describe next.
Client. A legitimate user who would like to connect to server S. Let
C = {C1, . . . , Cn} be the set of clients. Each client Cj holds two passwords:
a primary password and a secondary password, which we simply denote
by wC and w′C and we assume they are chosen uniformly at random from
password dictionaries D and D′ respectively.
Server. It is a system in charge of handling clients’ login requests. The
server S has access to file F storing the clients’ passwords. More specif-
ically, the file F stores one entry per client, each entry containing the
secondary password followed by k potential passwords, i.e.:

F [Cj] = H(w′S), H(w1
S), . . . ,H(wk

S)

where for each client Cj ∈ C holding wC and w′C as primary and secondary
password, it holds that H(w′S) = H(w′C) and ∃ i s.t. H(wi

S) = H(wC).
The correct index i is not stored by S.
Honeychecker: This is an auxiliary and simple device whose only goal
is to detect whenever the password file F has been compromised. It main-
tains a list L storing the correct index i per client Cj , i.e. L[Cj] = i. It
accepts two commands:

– Set (Cj , i): Sets L[Cj] to value i.
– Check (Cj , i

′): Checks whether L[Cj] equals i′. It outputs a r = 1 if
L[Cj] = i′ and r = 0 otherwise.

The connection between S and HC is a minimal channel which we
assume secure. The idea is to run a PAKE protocol between C and S in
such a way that it will allow S to identify the index i such that H(wi

S) =
H(wC). Subsequently, S queries the HC with Check(C,i) and the latter
will check against its records whether the index i is associated to client C
or not. If r = 1, it is an indication that a legitimate client is attempting
the login and therefore access to the requested resource should be granted.
However, r = 0 signals a possible compromise of the password file. In the
next paragraph we detail how a passive or active HC may react to each
scenario.

Login access As described in Figure 2 the client wants access to a
Resource e.g an email service, which may or may not be co-located with
the login server. The HoneyPAKE protocol between the client and the
login server will in the end output a shared key which the server can
forward to the resource as a credential for the service (or the established
secure PAKE-channel can be used to create a new credential). We do not
explicitly write these extra steps in the protocols below, since they may
depend on context.

The HC can enter this login access passively and just log the login
requests and corresponding correct or wrong indices. The administrator
can then periodically check if an alarm was raised, or be alerted imme-
diately. Alternatively the HC can also play a more active role, see Fig.
4.2, and contribute to the decision whether access is granted or not. The
advantage is that malicious attempts to gain access via honeywords will
immediately be bounced, however the downside is need for a more active
HC. The possible cases for login attempts are

– with a a correct password i.e. the sugarword
– with a false password, which is a honeyword

– with a false password, which is not in the honeyword list

The first case will always result in login, while the last possibility will
always be blocked by S. The outcome of the second possibility will depend
on whether the HC is active or passive.

Fig. 3. Login access granted by Resource.

4.3 Security Model

In the security model for the HoneyPAKE system, we will in general
consider the HC as being incorruptible. The reasoning behind this as-
sumption is that the HC is a very simple piece of hardware only having
to handle simple indices. It only has minimal external channels, it only
needs a minimal memory storing indices and only needs to be able to han-
dle simple comparisons of indices. On the other hand, the security model
does allow the adversary to corrupt S, but only in the form of stealing
the password file F . We will discuss stronger forms of corruption below.

One could speculate in extending this model and allow the attacker
to compromise either S or HC, but not both, and indeed this will also be
secure since the information stored on HC is minimal and would not allow
an attacker to compromise security. Indeed, in case HC is compromised, it
should not jeopardize the security level of communication between client
and server as it is protected by the PAKE protocol. In the worst case
scenario, the security level of HoneyPAKEs, even with a corrupted HC
should be at the same security level of any PAKE protocol [3].

We will however stay in the model above which is more closely related
to the Honeyword idea and argument of a simple incorruptible HC.

Next we describe the attack scenarios that we consider in this pro-
posal:

1. Compromised File F : As result from a security breach, the adversary
A might get access to the password file F . Regardless of how the
passwords are stored in F , e.g. plain text, hashed or hashed and salted,
it is reasonable to assume that A can obtain the passwords in clear
by brute forcing F and then try to masquerade as C to S [8].

2. Standard Operation: We consider an adversary who has full control of
the communication C between S, different to [1], where they assume
the existence of a secure channel. However in this scenario the attacker
does not have access to the password file F .

Discussion: The first attack scenario is considered by Juels and Rivest
in [1] by introducing the HC as a secondary server. The motivation in
[1] is not to prevent the leakage of F but detect whenever such event
occurs. The underlying idea is that whenever F gets compromised, A
may observe at most k potential passwords per client, but only one is
the correct one. Furthermore F contains no information about the index
position of the correct password. Then the adversary can only select one
candidate password at random when trying to masquerade as C to S. In
such a case, the leakage of F could be detected by theHC with probability
(k−1)/k for each attempt of A and subsequent security measures can be
taken e.g. trigger an alarm informing about compromise of F and asking
the server to reject the login attempt.

In this work we augment the proposal of Juels and Rivest by removing
the requirement for a secure channel between C and S. The proposal is to
run a PAKE-style protocol between C and S, after which S can identify
if C holds one of the k potential hashed passwords H(w1

S), . . . ,H(wk
S)

and ii) the potential index i s.t. H(wC) = H(wi
S). Then S proceeds as

described in [1], by querying the HC which checks if i is the correct in-
dex or not. The construction guarantees that if the password file F is
compromised, an active adversary A has at most 1/k chances of mas-
querade as C without being detected, while if F is not compromised, A
can masquerade as C with success probability at most 1/|D|, where D is
the password dictionary.

The second scenario above, called standard operation, is close to the
standard PAKE model and the attacker can be active masquerading as
either S or C. However, we do not allow the password file to be com-
promised in this scenario. The reason is that an adversary knowing the
honeyword list of passwords, can actively masquerade as S towards C

and do a binary search for the correct password. This would be detectable
from the client side, but might not be practical in the real world. We will
discuss this below.

It is reasonable to question why one could not simply store the pass-
word file in HC or split it between S and HC and benefit from the
assumption that HC is incorruptible. The reason is that the HC is by
design an extremely simple component with minimal external channels as
mentioned above. In particular, it is not meant to compute hashes, nor
to compare or retrieve passwords.

4.4 HoneyPAKE Construction

We will now consider our suggestion for a HoneyPAKE protocol. Remem-
ber that C holds the two passwords w′C , wC and S stores the correspond-
ing password list H(w′S), H(w1

S), . . . ,H(wk
S). The login protocol now runs

as follows:

C → S : ReqC

S → C : YS := H(w′S) · gy

C now computes Y = (YS/H(w′C)) KC := Y x and ZC := H2(Y, g
x,KC)

and sends the following back to S:

C → S : XC := H(wC) · gx , ZC

Now S computes, for i ∈ {1, · · · , k}

Wi := H2((XC/H(wi
S))y)

If Wi 6= ZC ∀i, then the login request is rejected directly by S. If Wi = ZC

for some i, then:

S → HC : i

HC checks if i agrees with the stored value i∗ for C, and if i 6= i∗ then
an alarm is raised.

Notice that if we are using this construction purely for access control
then it appears that it may be possible to drop the second hash function
H2 as we will not be using the session key subsequently, but this needs to
be confirmed by a full analysis and changes the group security assumption
from CDH to DDH. Of course if we want to keep open the option of later
using the session key for a secure channel, perhaps to communicate a
credential or ticket to C, as described above, we need to retain H2 to
conceal KC .

4.5 HoneyPAKE Security Analysis

In this section we make a brief and sketchy security analysis. The se-
curity of the HoneyPAKE relies on the intractability of the CDH prob-
lem in group G. Similar to other security proofs for PAKE protocols
in the random model [3,9], in order to construct a CDH reduction, the
confirmation code KC has to be associated with the identity of the ses-
sion for which it was computed.1 This can be easily achieved by mak-
ing the following changes in the the HoneyPAKE protocol: The client
sets ZC := H2(Y, g

x,KC) instead of ZC := H2(KC), while the server
sets Wi := H2(g

y, Xi, X
y
i) with Xi = XC/H(wi

S) instead of Wi :=
H2((XC/H(wi

S))y).
We proceed to analyze the security of the HoneyPAKE protocol for

passive adversaries and sketch a reduction to CDH problem. For active
adversaries, we give only intuition of the security guarantee and leave the
full security proof for future work. We consider the following scenarios:
Scenario 1: Security against eavesdropper adversaries who may have
access to password file F .

Claim. Honest executions of the protocol between C and S do not leak
password information under the CDH assumption.

Proof. Let P0 be the original protocol. We demonstrate that it is possi-
ble to simulate P0 such that i) no password information is included in
the protocol and ii) an eavesdropper AE can not distinguish the original
protocol from the simulation except with negligible probability. Let P1 be
such simulation as follows:

C → S : ReqC

S → C : YS := gy

C → S : XC = gx, ZC

where ZC = H(gx, gy, gz) and x, y, z
$←− Zq.

By inspection it follows that P1 does not contain password infor-
mation. Let E0 be the event where AE queries the random oracle for
H(gx, gy, gxy) such that i) the term gx and gy generated respectively by
C and S in an honest protocol execution. Then obviously P0 and P1 are
identical unless the event E0 occurs, let Pr[E0] = ε0. We build a CDH-
solver BAE whose advantage is ε0/nro, where nro is an upper bound to

1 Typically the session ID is defined as the concatenation of the messages exchanged
between C and S without the confirmation code.

the number of random oracle queries made by AE . Then it simply follows
that P0 and P1 are indistinguishable under the CDH assumption.

Scenario 2: Security against active attackers with no access to password
file F .

Let A be an adversary against the HoneyPAKE protocol who fully
controls the channel between C and S and does not have corruption
capabilities. The construction of the HoneyPAKE intrinsically protects
the client’s password during the authentication phase even for hostile
networks. It also limits A to only online dictionary attacks, where she has
to guess the primary and secondary password for a client of her choice.
Let E2 be the event where A successfully logs into server S without the
HC raising an alarm.

Claim. For all adversaries A, Pr[E2]≤ 1/(D ·D′) + ε(λ), where D and D′
denote the password dictionaries, ε is a negligible function of the security
parameter λ.

Scenario 3: Security against active attackers with access to password
file F .

In this scenario we allow A to compromise the server S and obtain
the password file F , i.e. for each client, she knows the secondary password
w′C and the list of k potential primary passwords w1

C · · ·wk
C . Let E3 be

the event where A successfully logs into server S without the HC raising
an alarm.

Claim. For all adversaries A with corruption capabilities, Pr[E3]≤ 1/k.

We do not provide proofs for these claims, but they should follow via
standard methods for PAKEs.

Remark: As mentioned above, an adversary, who manages to obtain
the password File F and controls the communication between C and S,
could try to masquerade as S to C, run the HoneyPAKE protocol and
use the client C to obtain the i-th position such that H(wC) = H(wi

S).
Even though our protocol does not prevent such situations to happen,
such attack could be detected by the client who could raise an alarm.
Therefore, for our security definition, we assume that an adversary can
only compromise the password file but not masquerade as the server.

4.6 Variations on a Theme

There are several possibilities for handling the secondary password, that
we describe here. We also mention an alternative approach which avoids

the need for the secondary password but at a penalty in terms of efficiency.
This latter approach does however have some interesting features such as
not directly revealing the correct index to S.

Naive Approach: The simplest option is simply to store the hash of the
secondary password on the server side and either have the user input it
each time or store it on the user’s device. The former is obviously inconve-
nient for the user, while the latter makes the protocol device dependent.

Derived Secondary Password: Rather than having to store or re-input
each time the secondary password, it could be computed as a short hash
H∗ of the H(wi), where the honeywords for a given user are chosen such
that they all yield the same short hash value. This of course means that
there will be a small loss of entropy, a few bits, with respect to the already
rather low entropy of the usual passwords, but this is probably acceptable.

Secondary Password as Nonce: In place of the secondary password
H(w′C) in the protocol above we could use a nonce generated by a token
for a two factor type authentication. We assume that each user is provided
with a hardware token that will generate short nonces in sync with a
similar generator at the server side, as is done for many internet banking
protocols. Such nonces will typically be quite short, low-entropy and easy
for the user to type in, so maybe six digit strings.

The purpose of the secondary password, or nonce, is to counter an
attacker masquerading as S from launching offline dictionary attacks.
Suppose that such an attacker has managed to guess this value correctly,
then this will cancel the value injected by C in computing ZC . Knowing y,
the adversary can now test guesses at the password at leisure by checking
for guesses at wY :

H2((XC/H(wY))y) = ZC

It is enough then that the nonce space be sufficiently large to make
the chance of guessing correctly reasonably small. This is analogous to
the way that we have to accept that there will be non-negligible chance
of a successful on-line guessing attack against a PAKE. The protocol is
as above with the nonce replacing the hash of the shared password.

4.7 HoneyPAKE Without Secondary Password

As remarked earlier, the use of a secondary password may impact us-
ability. We can avoid introducing a secondary password, and we discuss
some constructions in this section. The setup is as before but without the
secondary password.

C → S : ReqC

S → C : X1 := (H(w1
S))y , · · · , Xk := (H(wk

S))y

C now computes for i ∈ {1, · · · , k} Yi := Xx
i , and Yk+1 := H2((H(wC))x)

and sends the following back to S:

C → S : Y1 , Y2 , · · · , Yk+1

S now checks if H2(Y
1/y
i) = Yk+1 for some i, and if true then:

S → HC : i

This version is less efficient than those presented above and does allow
an adversary masquerading as S to have k guessing attempts per faked
login, but it does avoid the need for the secondary password.

4.8 Index-hiding HoneyPAKE

To reduce the scope of online guessing attacks in last subsection, we
can reintroduce the nonce mechanism as above. Further, if C cyclically
shifts the terms in the list, we can prevent an honest, but curious, S
from learning which is the correct password. This addresses a further
threat scenario which is discussed in [10]: that of the login server being
corrupted and simply recording and later replaying the correct index,
perhaps triggered by a cryptic knock.

Of course we have to communicate the shift to HC in order for it
to check if the index is correct. We thus assume that the nonces can be
broken into two concatenated pieces, Nonce = Nonce1||Nonce2 such that
C sees the full string but S sees only Nonce1 and HC sees only Nonce2.
Nonce1 protects against online attacks and Nonce2 disguises the index
and both can be low entropy as above.

C → S : ReqC

S → C : X1 := H(Nonce1) · (H(w1
S))y, · · · , Xk := H(Nonce1) · (H(wk

S))y

C now computes for i ∈ {1, · · · , k} Yi := (Xi/H(Nonce1))
x, and Zc :=

H2((H(wC))x), and cyclically shifts the indices:

Zi := Yi+Nonce2 (mod k)

and sends the following back to S:

C → S : Z1 , Z2 , ... , Zk , Zc

Now S checks if, for some j ∈ {1, · · · , k}

H2(Z
1/y
j) := Zc

If so, then:

S → HC : j

Finally HC will remove the Nonce2 shift: j′ := j − Nonce2 (mod k) and
check if j′ agrees with the stored index.

Note that this does not prevent an active adversary who controls S to
learn the correct password by replacing passwords in the honeyword list,
and check if login is still possible, however we could make this statisti-
cally detectable and auditable by adding an extra round of confirmation
codes to be checked by C. An advantage of this protocol over the one
in section 4.4, is that an adversary guessing or knowing Nonce1 cannot
launch an offline dictionary attack against the password. It follows that if
a client accidentally types a password for another service, a malicious S
cannot derive this password. A drawback of the protocol in this and the
previous subsection is that a malicious client can purposely trigger the
honeychecker alarm by changing the order of the returned terms. This
could be countered in more advanced, but less efficient, versions of the
protocol.

The security of these protocols are based on the CDH or DDH as-
sumption depending on the type of attack to be prevented.The proofs
need a subtly different model than standard PAKE due to the use of
secondary passwords. Session Ids and Ids in general have been omitted
above, but can easily be added for the security proofs.

5 Authentication of the Server

In the above we have focused on authentication of C to S, as befits an
access control mechanism. However it seems wise in certain situations to
also authenticate S to C. Our protocols with ephemeral nonces are ready
transformable to versions in which S is authenticated to C first, allow-
ing C to abort early if authentication fails. To achieve this C supplies a
masked DH term along with the initial request. S can now compute a con-
firmation code derived from the putative session key which is transmitted
back to C in the second message.

To illustrate, let us consider a transform of the previous protocol where
S also authenticates to C via the shared nonce. The round efficiency is

preserved by appending new cryptographic data to the first message which
previously only contained the logon request:

C → S : ReqC , V := H(Nonce1) · gz

S calculates the confirmation term X−1 := H2((V/H(Nonce1))
y) and

sends it back along with

S → C : X−1 , X0 := H(Nonce1+1)gy , X1 := H(Nonce1+1)·(H(w1
S))y,

· · · , Xk := H(Nonce1 + 1) · (H(wk
S))y

C now confirms that X−1 = H2((X0/H(Nonce1 + 1))z) and then
proceeds exactly as before:

C → S : Z1 , Z2 , ... , Zk , Zc

with Zi as above except 1 is added to Noncei. And finally S can check

whether H2(Z
1/y
j) := Zc for some j ∈ {1, · · · , k}.

6 Conclusions

We have presented a way of merging PAKE-based access control with
Honeywords to get the benefits of both:

– Intrinsic protection of the password during login phase.
– Detection of attempts to exploit the compromise of a password file.

We have also presented a variant that incorporates a two-factor mech-
anism in a very natural way, where the token-generated nonce plays the
role of the secondary password. Further, we presented a variant of the
protocol in which the honey server S does not directly learn the index
of the correct (hashed) password. Finally, we briefly discussed how S can
also authenticate itself to the client via the shared nonce while preserving
the number of rounds, making masquerading detects detectable early in
the protocol.

7 Acknowledgements

We would like to thank Marjan Skrobot for helpful discussions. We would
like to thank the Luxembourg National Research Fund (FNR) for funding,
in particular PBR was supported by the FNR INTER-Sequoia project
which is joint with the ANR project SEQUOIA ANR-14-CE28-0030-01,
and JB was supported by the FNR CORE project AToMS.

References

1. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In
Sadeghi, A., Gligor, V.D., Yung, M., eds.: 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-
8, 2013, ACM (2013) 145–160

2. Vacca, J.R., Vacca, J.R.: Computer and Information Security Handbook, Second
Edition. 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2013)

3. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated
key exchange using diffie-hellman. In Preneel, B., ed.: Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Volume
1807 of Lecture Notes in Computer Science., Springer (2000) 156–171

4. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III. (2018) 456–486

5. Boyen, X.: Hidden credential retrieval from a reusable password. In: Proceedings of
the 4th International Symposium on Information, Computer, and Communications
Security. ASIACCS ’09, New York, NY, USA, ACM (2009) 228–238

6. Ford, W., Kaliski, Jr., B.S.: Server-assisted generation of a strong secret from a
password. In: Proceedings of the 9th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises. WETICE ’00, Wash-
ington, DC, USA, IEEE Computer Society (2000) 176–180

7. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: Loss-resistant pass-
word management. In Gritzalis, D., Preneel, B., Theoharidou, M., eds.: Computer
Security – ESORICS 2010, Berlin, Heidelberg, Springer Berlin Heidelberg (2010)
286–302

8. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7) (June 2015) 78–87

9. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange
protocols. In Menezes, A., ed.: Topics in Cryptology – CT-RSA 2005, Berlin,
Heidelberg, Springer Berlin Heidelberg (2005) 191–208

10. Genc, Z.A., Lenzini, G., Ryan, P.Y.A., Sandoval, I.V.: A security analysis, and a
fix, of a code-corrupted honeywords system. (2017)

