102 research outputs found

    Machine Learning Classification of Females Susceptibility to Visceral Fat Associated Diseases

    Get PDF
    The problem of classifying subjects into risk categories is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of these algorithms is to predict dichotomous responses (e.g. healthy/at risk) based on several features. Similarly to statistical inference models, also ML models are subject to the common problem of class imbalance. Therefore, they are affected by the majority class increasing the false-negative rate. In this paper, we built and evaluated eighteen ML models classifying approximately 4300 female participants from the UK Biobank into three categorical risk statuses based on responses for the discretised visceral adipose tissue values from magnetic resonance imaging. We also examined the effect of sampling techniques on classification modelling when dealing with class imbalance. Results showed that the use of sampling techniques had a significant impact. They not only drove an improvement in predicting patients risk status but also facilitated an increase in the information contained within each variable. Based on domain experts criteria, the three best models for classification were finally identified. These encouraging results will guide further developments of classification models for predicting visceral adipose tissue without the need for a costly scan

    Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data

    Get PDF
    The objective of this study was to improve classification accuracy in cancer microarray gene expression data using a collection of machine learning algorithms available in WEKA. State of the art deterministic classification methods, such as: Kernel Logistic Regression, Support Vector Machine, Stochastic Gradient Descent and Logistic Model Trees were applied on publicly available cancer microarray datasets aiming to discover regularities that provide insights to help characterization and diagnosis correctness on each cancer typology. The implemented models, relying on 10-fold cross-validation, parameterized to enhance accuracy, reached accuracy above 90%. Moreover, although the variety of methodologies, no significant statistic differences were registered between them, at significance level 0.05, confirming that all the selected methods are effective for this type of analysis.info:eu-repo/semantics/publishedVersio

    Identifying hazardousness of sewer pipeline gas mixture using classification methods: a comparative study

    Get PDF
    In this work, we formulated a real-world problem related to sewer pipeline gas detection using the classification-based approaches. The primary goal of this work was to identify the hazardousness of sewer pipeline to offer safe and non-hazardous access to sewer pipeline workers so that the human fatalities, which occurs due to the toxic exposure of sewer gas components, can be avoided. The dataset acquired through laboratory tests, experiments, and various literature sources was organized to design a predictive model that was able to identify/classify hazardous and non-hazardous situation of sewer pipeline. To design such prediction model, several classification algorithms were used and their performances were evaluated and compared, both empirically and statistically, over the collected dataset. In addition, the performances of several ensemble methods were analyzed to understand the extent of improvement offered by these methods. The result of this comprehensive study showed that the instance-based learning algorithm performed better than many other algorithms such as multilayer perceptron, radial basis function network, support vector machine, reduced pruning tree. Similarly, it was observed that multi-scheme ensemble approach enhanced the performance of base predictors

    Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity

    Get PDF
    Preimplantation aneuploidy screening of cleavage stage embryos using fluorescence in situ hybridization (FISH) may no longer be considered the standard of care in reproductive medicine. Over the last few years, there has been considerable development of novel technologies for comprehensive chromosome screening (CCS) of the human genome. Among the notable methodologies that have been incorporated are whole genome amplification, metaphase and array based comparative genomic hybridization, single nucleotide polymorphism microarrays, and quantitative real-time PCR. As these methods become more integral to treating patients with infertility, it is critical that clinicians and scientists obtain a better understanding of their capabilities and limitations. This article will focus on reviewing these technologies and the evidence of their validity

    Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes.</p> <p>Results</p> <p>We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality.</p> <p>Conclusion</p> <p>We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality.</p

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link

    What Is Direct Allorecognition?

    Get PDF
    Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHCpeptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway
    corecore