338 research outputs found

    Explainable neural networks for trait-based multispecies distribution modelling—A case study with butterflies and moths

    Get PDF
    Species response traits mediate environmental effects on species distribution. Traits are used in joint and multispecies distribution models (JSDMs and MSDMs) to enable community-wide shared parameters that characterise niche filtering along environmental gradients. Multispecies machine learning SDMs, however, do not use traits as their inclusion requires an additional taxonomic dimension that is incompatible with their usual tabular inputs. This has confined trait mediation in SDMs to hierarchical Bayesian models. Here we provide a novel artificial neural network (ANN) architecture that solves this dimensionality problem. Our ANN includes species traits (via a time distributed layer) and is therefore able to identify not only species-specific responses to the environment, but also shared responses across the community that are mediated by species traits. Model performance evaluated at the species level not only quantifies the reliability of species predictions, but also their departure from an average response dictated by traits only. We apply our model to two unique long-term spatio-temporal of butterfly and moth datasets collected across the United Kingdom between 1990 and 2019. In addition to species traits, predictors include numerous metrics derived from weather, land-cover and topology data. For butterflies and moths we show convincing model performance for classifying species occupancy. We use SHAP (Shapley Additive exPlanations) to explain the ANN and show how trait-mediated and species-specific responses can be approximated, hence yielding ecological insights on the key drivers of species distribution. We highlight a range of drivers of change that determine occupancy, including wind, temperature as well as habitat type. We demonstrate that a trait-based approach can be encoded as an ANN by using a time distributed layer. This brings ANNs unmatched predictive capabilities to the field of MSDMs, at the same time of lifting their reputed drawback of poor explainability

    Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales

    Get PDF
    A key challenge for both ecological researchers and biodiversity managers is the measurement and prediction of species richness across spatial scales. Typically, biodiversity is assessed at fine scales (e.g. in quadrats or transects) for practical reasons, but often we are interested in coarser-scale (field, regional, global) diversity issues. Moreover, the pressures affecting biodiversity patterns are often scale specific, making multiscale assessment a crucial methodological priority. As species richness is not additive, it is difficult to translate from the scale of measurement to the scale(s) of interest. A number of methods have been proposed to tackle this problem, but most are too model specific or too rigid to allow general application. Here, we present a general framework (and a specific implementation of it) that allows such scale translations to be performed. Building on the intrinsic relationships among patterns of species richness, abundance and spatial turnover, we introduce a framework that links and predicts the profile of the species-area relationship and the species-abundance distributions across scales when a limited number of fine-scale scattered samples are available. Using the correlation in species' abundances between pairs of samples as a function of the distance between them, we are able to link the effects of aggregation, similarity decay, species richness and species abundances across scales. Our approach allows one to draw inferences about biodiversity scaling under very general assumptions pertaining to the nature of interactions, the geographical distributions of individuals and ecological processes. We demonstrate the accuracy of our predictions using data from two well-studied forest stands and also demonstrate the potential value of such methods by examining the effects of management on farmland insects across scales. The framework has important applications to biodiversity research and conservation practice

    Intramural Duodenal Haematoma after Endoscopic Biopsy: Case Report and Review of the Literature

    Get PDF
    The development of intramural duodenal haematoma (IDH) after small bowel biopsy is an unusual lesion and has only been reported in 18 children. Coagulopathy, thrombocytopenia and some special features of duodenal anatomy, e.g. relatively fixed position in the retroperitoneum and numerous submucosal blood vessels, have been suggested as a cause for IDH. The typical clinical presentation of IDH is severe abdominal pain and vomiting due to duodenal obstruction. In addition, it is often associated with pancreatitis and cholestasis. Diagnosis is confirmed using imaging techniques such as ultrasound, magnetic resonance imaging or computed tomography and upper intestinal series. Once diagnosis is confirmed and intestinal perforation excluded, conservative treatment with nasogastric tube and parenteral nutrition is sufficient. We present a case of massive IDH following endoscopic grasp forceps biopsy in a 5-year-old girl without bleeding disorder or other risk for IDH, which caused duodenal obstruction and mild pancreatitis and resolved within 2 weeks of conservative management. Since duodenal biopsies have become the common way to evaluate children or adults for suspected enteropathy, the occurrence of this complication is likely to increase. In conclusion, the review of the literature points out the risk for IDH especially in children with a history of bone marrow transplantation or leukaemia

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change

    Comparing the Bacterial Diversity of Acute and Chronic Dental Root Canal Infections

    Get PDF
    This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections

    Scaling properties of protein family phylogenies

    Get PDF
    One of the classical questions in evolutionary biology is how evolutionary processes are coupled at the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling, as a characterization of balance) of a large set of protein phylogenies with a set of species phylogenies. The comparative analysis shows that both sets of phylogenies share remarkably similar scaling behavior, suggesting the universality of branching rules and of the evolutionary processes that drive biological diversification from gene to species level. In order to explain such generality, we propose a simple model which allows us to estimate the proportion of evolvability/robustness needed to approximate the scaling behavior observed in the phylogenies, highlighting the relevance of the robustness of a biological system (species or protein) in the scaling properties of the phylogenetic trees. Thus, the rules that govern the incapability of a biological system to diversify are equally relevant both at the gene and at the species level.Comment: Replaced with final published versio

    Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli

    Get PDF
    Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies

    Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine

    Get PDF
    While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies

    TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequencing metagenomes that were pre-amplified with primer-based methods requires the removal of the additional tag sequences from the datasets. The sequenced reads can contain deletions or insertions due to sequencing limitations, and the primer sequence may contain ambiguous bases. Furthermore, the tag sequence may be unavailable or incorrectly reported. Because of the potential for downstream inaccuracies introduced by unwanted sequence contaminations, it is important to use reliable tools for pre-processing sequence data.</p> <p>Results</p> <p>TagCleaner is a web application developed to automatically identify and remove known or unknown tag sequences allowing insertions and deletions in the dataset. TagCleaner is designed to filter the trimmed reads for duplicates, short reads, and reads with high rates of ambiguous sequences. An additional screening for and splitting of fragment-to-fragment concatenations that gave rise to artificial concatenated sequences can increase the quality of the dataset. Users may modify the different filter parameters according to their own preferences.</p> <p>Conclusions</p> <p>TagCleaner is a publicly available web application that is able to automatically detect and efficiently remove tag sequences from metagenomic datasets. It is easily configurable and provides a user-friendly interface. The interactive web interface facilitates export functionality for subsequent data processing, and is available at <url>http://edwards.sdsu.edu/tagcleaner</url>.</p

    How does study quality affect the results of a diagnostic meta-analysis?

    Get PDF
    Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited
    corecore