242 research outputs found

    Orbital-scale climate forcing of grassland burning in southern Africa.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.We thank Linda Rossignol for picking the foraminifera for carbon radiometric dating, Olivier Ther for XRF analysis, Marie-Hélène Castera and Muriel Georget for laboratory assistance, V. Hanquiez for extracting bathymetric data, Thibault Caley for providing the East African monsoon regression model data, Lydie Dupont for sharing the pollen data of cores GeoB1711 and MD96-2048, and Louis Scott for providing Wonderkrater’s charcoal data. This research was funded by European Research Council Advanced Grant TRACSYMBOLS 249587. The postdoctoral position of A.-L.D was funded by this project

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    Scenario of the spread of the invasive species Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) in Brazil

    Get PDF
    Zaprionus indianus was first recorded in Brazil in 1999 and rapidly spread throughout the country. We have obtained data on esterase loci polymorphisms (Est2 and Est3), and analyzed them, using Landscape Shape Interpolation and the Monmonier Maximum Difference Algorithm to discover how regional invasion occurred. Hence, it was apparent that Z. indianus, after first arriving in São Paulo state, spread throughout the country, probably together with the transportation of commercial fruits by way of the two main Brazilian freeways, BR 153, to the south and the surrounding countryside, and the BR 116 along the coast and throughout the north-east

    Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon

    Get PDF
    The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT

    RBF-TSS: Identification of Transcription Start Site in Human Using Radial Basis Functions Network and Oligonucleotide Positional Frequencies

    Get PDF
    Accurate identification of promoter regions and transcription start sites (TSS) in genomic DNA allows for a more complete understanding of the structure of genes and gene regulation within a given genome. Many recently published methods have achieved high identification accuracy of TSS. However, models providing more accurate modeling of promoters and TSS are needed. A novel identification method for identifying transcription start sites that improves the accuracy of TSS recognition for recently published methods is proposed. This method incorporates a metric feature based on oligonucleotide positional frequencies, taking into account the nature of promoters. A radial basis function neural network for identifying transcription start sites (RBF-TSS) is proposed and employed as a classification algorithm. Using non-overlapping chunks (windows) of size 50 and 500 on the human genome, the proposed method achieves an area under the Receiver Operator Characteristic curve (auROC) of 94.75% and 95.08% respectively, providing increased performance over existing TSS prediction methods

    Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    Get PDF
    Abstract Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression

    A quantitative approach to study indirect effects among disease proteins in the human protein interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology makes it possible to study larger and more intricate systems than before, so it is now possible to look at the molecular basis of several diseases in parallel. Analyzing the interaction network of proteins in the cell can be the key to understand how complex processes lead to diseases. Novel tools in network analysis provide the possibility to quantify the key interacting proteins in large networks as well as proteins that connect them. Here we suggest a new method to study the relationships between topology and functionality of the protein-protein interaction network, by identifying key mediator proteins possibly maintaining indirect relationships among proteins causing various diseases.</p> <p>Results</p> <p>Based on the i2d and OMIM databases, we have constructed (i) a network of proteins causing five selected diseases (DP, disease proteins) plus their interacting partners (IP, non-disease proteins), the DPIP network and (ii) a protein network showing only these IPs and their interactions, the IP network. The five investigated diseases were (1) various cancers, (2) heart diseases, (3) obesity, (4) diabetes and (5) autism. We have quantified the number and strength of IP-mediated indirect effects between the five groups of disease proteins and hypothetically identified the most important mediator proteins linking heart disease to obesity or diabetes in the IP network. The results present the relationship between mediator role and centrality, as well as between mediator role and functional properties of these proteins.</p> <p>Conclusions</p> <p>We show that a protein which plays an important indirect mediator role between two diseases is not necessarily a hub in the PPI network. This may suggest that, even if hub proteins and disease proteins are trivially of great interest, mediators may also deserve more attention, especially if disease-disease associations are to be understood. Identifying the hubs may not be sufficient to understand particular pathways. We have found that the mediators between heart diseases and obesity, as well as heart diseases and diabetes are of relatively high functional importance in the cell. The mediator proteins suggested here should be experimentally tested as products of hypothetical disease-related proteins.</p

    Structural Change and the Fall of Income Inequality in Latin America : Agricultural Development, Inter-sectoral Duality, and the Kuznets Curve

    Get PDF
    In this study we approach the recent decline in income inequality in Latin America from the perspective of structural change with a focus on the relative performance of the agricultural sector. Our focus is on the underlying forces implied by Kuznets (1965). We zoom in on the relative performance of agriculture in the development process and the rural-urban duality and pay particular attention to the last couple of decades in relation to the entire post-1950 period. We attempt to estimate empirically possible theoretical relations with regard to these patterns by posing the following basic questions: how does the resurgence of agriculture relate to the reduction of income inequality and to what extent is this an expression of Latin America moving downward on the Kuznets curve? The literature on agriculture’s relation to the recent changes of income distribution in Latin America is quite limited. For instance, in a recent ECLAC report titled “Structural change for equality” (2012), the role of agriculture is not even mentioned. By agriculture we mean both farming and agro-business that processes and transports that output. To our knowledge, this paper is the first attempt to investigate this relationship for the recent decades in the perspective of structural change in Latin America. There are strong theoretical reasons to connect agricultural development to income distribution. The closing of the rural-urban income gap reflects what Reynolds (1975) called a “dynamic” transformation of agriculture and relates to the contribution agriculture provides for overall growth of the economy. In addition, the elasticity of poverty reduction with respect to growth is estimated to be stronger when growth emanates in the agricultural sector (Ravallion and Chen 2007, de Janvry and Sadoulet 2009). Productivity growth in the lagging sector should also contribute to sectoral labor productivity to convergence and thus helps to reduce inequality (Timmer 1988). For these reasons, the resurgence of agriculture driven partly by improving commodity prices should be given due attention when assessing the decline in income inequality in Latin America. According to the logic of the Kuznets curve, the hypothesized “turning point” of the inverted U-curve is generated by a reduction of income inequality in one or both of the sectors and/or a reduction of the rural-urban income gap as the weight of the agricultural sector diminishes, and the income per capita gap between them declines. We find that the recent decline in income inequality is related to the recent resurgence of Latin American agriculture, and, by inference, its lack of decline across most of the 20th century must be related to a lack of productivity change in agriculture. We provide estimates showing that during the recent decades inter-sectoral duality has been reduced by agricultural productivity growth. The duality expressed as an inter-sectoral Gini shows the shape of an inverted U-curve and as such the closing of the rural-urban income gap corroborates with the theoretical expectations postulated by Kuznets. The wider implication of the study is, however, that with slower growth in agricultural labor productivity, continuing improvement in the income distribution becomes more difficult. In the absence of strong manufacturing growth, agriculture might be able to reduce income inequality further if agro-industries remain unskilled labor intensive, thus raising the opportunity cost of unskilled workers. On the other hand, the traditional service sector has perhaps become the “new agricultural sector” in terms of productivity and labor surplus. In other words, the source of the remaining dualism does not come only from rural areas, but also from urban areas

    Spearfishing Regulation Benefits Artisanal Fisheries: The ReGS Indicator and Its Application to a Multiple-Use Mediterranean Marine Protected Area

    Get PDF
    The development of fishing efficiency coupled with an increase of fishing effort led to the overexploitation of numerous natural marine resources. In addition to this commercial pressure, the impact of recreational activities on fish assemblages remains barely known. Here we examined the impact of spearfishing limitation on resources in a marine protected area (MPA) and the benefit it provides for the local artisanal fishery through the use of a novel indicator. We analysed trends in the fish assemblage composition using artisanal fisheries data collected in the Bonifacio Strait Natural Reserve (BSNR), a Mediterranean MPA where the spearfishing activity has been forbidden over 15% of its area. Fish species were pooled into three response groups according to their target level by spearfishing. We developed the new flexible ReGS indicator reflecting shifts in species assemblages according to the relative abundance of each response group facing external pressure. The catch per unit effort (CPUE) increased by ca. 60% in the BSNR between 2000 and 2007, while the MPA was established in 1999. The gain of CPUE strongly depended on the considered response group: for the highly targeted group, the CPUE doubled while the CPUE of the untargeted group increased by only 15.5%. The ReGS value significantly increased from 0.31 to 0.45 (on a scale between 0 and 1) in the general perimeter of this MPA while it has reached a threshold of 0.43, considered as a reference point, in the area protected from spearfishing since 1982. Our results demonstrated that limiting recreational fishing by appropriate zoning in multiple-use MPAs represents a real benefit for artisanal fisheries. More generally we showed how our new indicator may reveal a wide range of impacts on coastal ecosystems such as global change or habitat degradation

    Immunomodulation Targeting Abnormal Protein Conformation Reduces Pathology in a Mouse Model of Alzheimer's Disease

    Get PDF
    Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD) where the normal soluble amyloid β (sAβ) peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAβ and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri) related peptide which has no sequence homology to Aβ or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Aβ in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001), associated with a reduction in the amyloid burden (p = 0.0001) and Aβ40/42 levels, as well as reduced Aβ oligomer levels. This type of immunomodulation has the potential to be a universal β-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases
    corecore