66 research outputs found

    M-CSF Induces Monocyte Survival by Activating NF-κB p65 Phosphorylation at Ser276 via Protein Kinase C

    Get PDF
    Macrophage colony-stimulating factor (M-CSF) promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-κB) is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-κB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-κB transcriptional activity in human monocyte-derived macrophages (MDMs) and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC) inhibitor Ro-31-8220, the conventional PKCα/β inhibitor Gö-6976, overexpression of dominant negative PKCα constructs and PKCα siRNA reduced NF-κB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-κBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCα as important upstream kinases for M-CSF-induced NF-κB transcriptional activation, NF-κB-regulated gene expression, NF-κB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-κB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-κB activation in human mononuclear phagocytes

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers.

    Get PDF
    Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes-modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility

    Using Arrested Solid — Solid Multiphase Reactions in Geological Materials to Deduce the Rate of Crustal Uplift

    No full text
    The history geological terrains experience can be traced as a series of temperature and pressure changes. Each change drives the system toward a new state of thermodynamic equilibrium. The resultant overprinted rock fabrics, textures and chemical heterogeneities can be difficult to interpret. However, if carefully chosen, features from the scale of kilometers to nanometers can be used to reconstruct the history of mountain systems. Uplift of the Sri Lankan Central Highlands was rapid enough to preserve well-developed symplectite textures, some of which represent arrested solid-state diffusion-controlled reactions of garnet + O{sub 2} to form orthopyroxene + plagioclase + magnetite, as the rocks were exhumed from over 30 km in the earth's crust. Our objective has been to determine the reaction mechanisms responsible for symplectite development, and to establish the time interval over which these reactions occurred, to constrain the rate of mountain uplift. Considering that the most rapid mechanism is solid state grain-boundary diffusion of oxygen, the reaction time can be constrained by bounding the rate of oxygen supply to the reaction site. The solid state grain boundary diffusion rate of oxygen has been inferred to be ca. 10{sup -14}m{sup 2}-sec (Farver and Yund, 1991), but is sensitive to inferred grain boundary width. The range of rates thus determined allows the distinction between rapid uplift similar to that of the Himalayan Mountains, and the slow and progressive erosion of a less dramatic terrain. Further constraints on diffusion control and energetic relationships are determined from crystallographic relationships between the reactant and product phases, and submicron scale microstructure

    EC88-219 1988 Nebraska Swine Report

    Get PDF
    This 1988 Nebraska Swine Report was prepared by the staff in Animal Science and cooperating departments for use in the Extension and Teaching programs at the University of Nebraska-Lincoln. Authors from the following areas contributed to this publication: Swine Nutrition, swine diseases, pathology, economics, engineering, swine breeding, meats, agronomy, and diagnostic laboratory. It covers the following areas: breeding, disease control, feeding, nutrition, economics, housing and meats

    Evaluation of atrial fibrillation induced during anesthesia with fentanyl and pentobarbital in German Shepherd Dogs with inherited arrhythmias

    No full text
    abstract: Objective: Animals: Procedures: Results: Conclusions and Clinical Relevance: To determine the type of atrial fibrillation induced by use of 2 pacing protocols during fentanyl and pentobarbital anesthesia before and after administration of atropine and to determine the organization of electrical activity in the left and right atria during atrial fibrillation in German Shepherd Dogs.7 German Shepherd Dogs.Extrastimulus and pacedown protocols were performed before and after atropine administration. Monophasic action potential spectral entropy and mean dominant frequency were calculated during atrial fibrillation.Atrial fibrillation occurred spontaneously in 6 of 7 dogs. All 7 dogs had atrial fibrillation induced. Sustained atrial fibrillation occurred in 13 of 25 (52%) episodes induced by the extrastimulus protocol and in 2 of 12 episodes of atrial fibrillation induced by pacedown. After atropine administration, sustained atrial fibrillation did not occur, and the duration of the nonsustained atrial fibrillation (6 episodes in 2 dogs of 1 to 26 seconds) was significantly shorter than before atropine administration (25 episodes in 7 dogs of 1 to 474 seconds). The left atrium (3.67 +/- 0.08) had lower spectral entropy than the right atrium (3.81 +/- 0.03), indicating more electrical organization in the left atrium. The mean dominant frequency was higher in the left atrium in 3 dogs.Atrial fibrillation developed spontaneously and was induced in German Shepherd Dogs under fentanyl and pentobarbital anesthesia. Electrical activity was more organized in the left atrium than in the right atrium as judged by use of spectral entropy
    • …
    corecore