51 research outputs found

    Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices

    Get PDF
    AbstractRemote sensing of specific climatic and biogeographical parameters is an effective means of evaluating the large-scale desertification status of drylands affected by negative human impacts. Here, we identify and analyze desertification trends in Iran for the period 2001–2015 via a combination of three indices for vegetation (NPP—net primary production, NDVI—normalized difference vegetation index, LAI—leaf area index) and two climate indices (LST—land surface temperature, P—precipitation). We combine these indices to identify and map areas of Iran that are susceptible to land degradation. We then apply a simple linear regression method, the Mann–Kendall non-parametric test, and the Theil–Sen estimator to identify long-term temporal and spatial trends within the data. Based on desertification map, we find that 68% of Iran shows a high to very high susceptibility to desertification, representing an area of 1.1 million km2 (excluding 0.42 million km2 classified as unvegetated). Our results highlight the importance of scale in assessments of desertification, and the value of high-resolution data, in particular. Annually, no significant change is evident within any of the five indices, but significant changes (some positive, some negative) become apparent on a seasonal basis. Some observations follow expectations; for instance, NDVI is strongly associated with cooler, wet spring and summer seasons, and milder winters. Others require more explanation; for instance, vegetation appears decoupled from climatic forcing during autumn. Spatially, too, there is much local and regional variation, which is lost when the data are considered only at the largest nationwide scale. We identify a northwest–southeast belt spanning central Iran, which has experienced significant vegetation decline (2001–2015). We tentatively link this belt of land degradation with intensified agriculture in the hinterlands of Iran’s major cities. The spatial and temporal trends identified with the three vegetation and two climate indices afford a cost-effective framework for the prediction and management of future environmental trends in developing regions at risk of desertification.</jats:p

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412

    Ancillary human health benefits of improved air quality resulting from climate change mitigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    Get PDF

    The impact of PKR activation: from neurodegeneration to cancer

    No full text
    An inverse association between cancer and neurodegeneration is plausible because these biological processes share several genes and signaling pathways. Whereas uncontrolled cell proliferation and decreased apoptotic cell death governs cancer, excessive apoptosis contributes to neurodegeneration. Protein kinase R (PKR), an interferon-inducible double-stranded RNA protein kinase, is involved in both diseases. PKR activation blocks global protein synthesis through eIF2alpha phosphorylation, leading to cell death in response to a variety of cellular stresses. However, PKR also has the dual role of activating the nuclear factor kappa-B pathway, promoting cell proliferation. Whereas PKR is recognized for its negative effects on neurodegenerative diseases, in part, inducing high level of apoptosis, the role of PKR activation in cancer remains controversial. In general, PKR is considered to have a tumor suppressor function, and some clinical data show a correlation between suppressed or inactivated PKR and a poor prognosis for several cancers. However, other studies show high PKR expression and activation levels in various cancers, suggesting that PKR might contribute to neoplastic progression. Understanding the cellular factors and signals involved in the regulation of PKR in these age-related diseases is relevant and may have important clinical implications. The present review highlights the current knowledge on the role of PKR in neurodegeneration and cancer, with special emphasis on its regulation and clinical implications
    corecore