6,034 research outputs found
Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis
Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes
Delegation and the Destruction of American Liberties: The Affordable Care Act and the Contraception Mandate
Static Solitons of the Sine-Gordon Equation and Equilibrium Vortex Structure in Josephson Junctions
The problem of vortex structure in a single Josephson junction in an external
magnetic field, in the absence of transport currents, is reconsidered from a
new mathematical point of view. In particular, we derive a complete set of
exact analytical solutions representing all the stationary points (minima and
saddle-points) of the relevant Gibbs free-energy functional. The type of these
solutions is determined by explicit evaluation of the second variation of the
Gibbs free-energy functional. The stable (physical) solutions minimizing the
Gibbs free-energy functional form an infinite set and are labelled by a
topological number Nv=0,1,2,... Mathematically, they can be interpreted as
nontrivial ''vacuum'' (Nv=0) and static topological solitons (Nv=1,2,...) of
the sine-Gordon equation for the phase difference in a finite spatial interval:
solutions of this kind were not considered in previous literature. Physically,
they represent the Meissner state (Nv=0) and Josephson vortices (Nv=1,2,...).
Major properties of the new physical solutions are thoroughly discussed. An
exact, closed-form analytical expression for the Gibbs free energy is derived
and analyzed numerically. Unstable (saddle-point) solutions are also classified
and discussed.Comment: 17 pages, 4 Postscript figure
Control of Josephson current by Aharonov-Casher Phase in a Rashba Ring
We study the interference effect induced by the Aharonov-Casher phase on the
Josephson current through a semiconducting ring attached to superconducting
leads. Using a 1D model that incorporates spin-orbit coupling in the
semiconducting ring, we calculate the Andreev levels analytically and
numerically, and predict oscillations of the Josephson current due to the AC
phase. This result is valid from the point contact limit to the long channel
length limit, as defined by the ratio of the junction length and the BCS
healing length. We show in the long channel length limit that the impurity
scattering has no effect on the oscillation of the Josephson current, in
contrast to the case of conductivity oscillations in a spin-orbit coupled ring
system attached to normal leads where impurity scattering reduces the amplitude
of oscillations. Our results suggest a new scheme to measure the AC phase with,
in principle, higher sensitivity. In addition, this effect allows for control
of the Josephson current through the gate voltage tuned AC phase.Comment: 12pages, 8 figure
Vortex dynamics and upper critical fields in ultrathin Bi films
Current-voltage (I-V) characteristics of quench condensed, superconducting,
ultrathin films in a magnetic field are reported. These I-V's show
hysteresis for all films, grown both with and without thin underlayers.
Films on Ge underlayers, close to superconductor-insulator transition (SIT),
show a peak in the critical current, indicating a structural transformation of
the vortex solid (VS). These underlayers, used to make the films more
homogeneous, are found to be more effective in pinning the vortices. The upper
critical fields (B) of these films are determined from the resistive
transitions in perpendicular magnetic field. The temperature dependence of the
upper critical field is found to differ significantly from Ginzburg-Landau
theory, after modifications for disorder.Comment: Phys Rev B, to be published Figure 6 replaced with correct figur
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Early respiratory viral infections in infants with cystic fibrosis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background
Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood.
Methods
Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life.
Results
Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances.
Conclusions
Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
Quasiclassical description of transport through superconducting contacts
We present a theoretical study of transport properties through
superconducting contacts based on a new formulation of boundary conditions that
mimics interfaces for the quasiclassical theory of superconductivity. These
boundary conditions are based on a description of an interface in terms of a
simple Hamiltonian. We show how this Hamiltonian description is incorporated
into quasiclassical theory via a T-matrix equation by integrating out
irrelevant energy scales right at the onset. The resulting boundary conditions
reproduce results obtained by conventional quasiclassical boundary conditions,
or by boundary conditions based on the scattering approach. This formalism is
well suited for the analysis of magnetically active interfaces as well as for
calculating time-dependent properties such as the current-voltage
characteristics or as current fluctuations in junctions with arbitrary
transmission and bias voltage. This approach is illustrated with the
calculation of Josephson currents through a variety of superconducting
junctions ranging from conventional to d-wave superconductors, and to the
analysis of supercurrent through a ferromagnetic nanoparticle. The calculation
of the current-voltage characteristics and of noise is applied to the case of a
contact between two d-wave superconductors. In particular, we discuss the use
of shot noise for the measurement of charge transferred in a multiple Andreev
reflection in d-wave superconductors
Effect of granularity on the insulator-superconductor transition in ultrathin Bi films
We have studied the insulator-superconductor transition (IST) by tuning the
thickness in quench-condensed films. The resistive transitions of the
superconducting films are smooth and can be considered to represent
"homogeneous" films. The observation of an IST very close to the quantum
resistance for pairs, on several substrates supports
this idea. The relevant length scales here are the localization length, and the
coherence length. However, at the transition, the localization length is much
higher than the superconducting coherence length, contrary to expectation for a
"homogeneous" transition. This suggests the invalidity of a purely fermionic
model for the transition. Furthermore, the current-voltage characteristics of
the superconducting films are hysteretic, and show the films to be granular.
The relevant energy scales here are the Josephson coupling energy and the
charging energy. However, Josephson coupling energies () and the charging
energies () at the IST, they are found to obey the relation .
This is again contrary to expectation, for the IST in a granular or
inhomogeneous, system. Hence, a purely bosonic picture of the transition is
also inconsistent with our observations. We conclude that the IST observed in
our experiments may be either an intermediate case between the fermioinc and
bosonic mechanisms, or in a regime of charge and vortex dynamics for which a
quantitative analysis has not yet been done.Comment: accepted in Physical Review
Critical Josephson Current in a Model Pb/YBa_2Cu_3O_7 Junction
In this article we consider a simple model for a c--axis
Pb/YBa_2Cu_3O_{7-\delta} Josephson junction. The observation of a nonzero
current in such a junction by Sun et al. [A. G. Sun, D. A. Gajewski, M. B.
Maple, R. C. Dynes, Phys. Rev. Lett. 72, 2267 (1994)] has been taken as
evidence against d--wave superconductivity in YBa_2Cu_3O_{7-\delta}. We
suggest, however, that the pairing interaction in the CuO_2 planes may well be
d--wave but that the CuO chains destroy the tetragonal symmetry of the system.
We examine two ways in which this happens. In a simple model of an incoherent
junction, the chains distort the superconducting condensate away from
d_{x^2-y^2} symmetry. In a specular junction the chains destroy the tetragonal
symmetry of the tunneling matrix element. In either case, the loss of
tetragonal symmetry results in a finite Josephson current. Our calculated
values of the critical current for specular junctions are in good agreement
with the results of Sun and co-workers.Comment: Latex File, 21 pages, 6 figures in uuencoded postscript, In Press
(Phys. Rev. B
- …
