830 research outputs found
Do Invariances in Deep Neural Networks Align with Human Perception?
An evaluation criterion for safe and trustworthy deep learning is how well the invariances captured by representations of deep neural networks (DNNs) are shared with humans. We identify challenges in measuring these invariances. Prior works used gradient-based methods to generate identically represented inputs (IRIs), i.e., inputs which have identical representations (on a given layer) of a neural network, and thus capture invariances of a given network. One necessary criterion for a network's invariances to align with human perception is for its IRIs look âsimilarâ to humans. Prior works, however, have mixed takeaways; some argue that later layers of DNNs do not learn human-like invariances yet others seem to indicate otherwise. We argue that the loss function used to generate IRIs can heavily affect takeaways about invariances of the network and is the primary reason for these conflicting findings. We propose an adversarial regularizer on the IRI-generation loss that finds IRIs that make any model appear to have very little shared invariance with humans. Based on this evidence, we argue that there is scope for improving models to have human-like invariances, and further, to have meaningful comparisons between models one should use IRIs generated using the regularizer-free loss. We then conduct an in-depth investigation of how different components (e.g. architectures, training losses, data augmentations) of the deep learning pipeline contribute to learning models that have good alignment with humans. We find that architectures with residual connections trained using a (self-supervised) contrastive loss with `p ball adversarial data augmentation tend to learn invariances that are most aligned with humans. Code: github.com/nvedant07/Human-NN-Alignment. We strongly recommend reading the arxiv version of this paper: https://arxiv.org/abs/2111.14726
L1CAM mutation in association with X-linked hydrocephalus and Hirschsprungâs disease
X-linked hydrocephalus (XLH) is characterized by increased intracranial ventricle size and head circumference secondary to aqueduct of Sylvius congenital stenosis. Exceedingly rare is the concurrence of XLH and Hirschsprungâs disease (HSCR) with a theoretical incidence of 1 in 125â250 million cases. Herein, we are describing a case of a patient with concurrent XLH and HSCR. The patient was delivered via cesarean section at 37 weeks gestation and underwent uneventful ventriculoperitoneal shunt placement. As a part of a workup for constipation, we performed a rectal biopsy, which was consistent with HSCR. Genetics testing showed hemizygous for R558X hemizygous mutation in the L1CAM gene. A C â T nucleotide substitution in exon 13 resulted in replacement of an arginine codon with a stop codon, a nonsense mutation. Although it is widely accepted that HSCR represents the failure of early embryonic neural crest cells to migrate properly, the exact mechanism is not known. The association of HSCR with XLH in the presence of L1CAM mutations remains quite interesting because cell adhesion molecules are involved in the proper migration of neural components throughout the body. Additional studies are necessary to fully elucidate the relationship between XLH and HSCR in the presence of L1CAM mutations
Foodways in transition: food plants, diet and local perceptions of change in a Costa Rican Ngäbe community
Background
Indigenous populations are undergoing rapid ethnobiological, nutritional and socioeconomic transitions while being increasingly integrated into modernizing societies. To better understand the dynamics of these transitions, this article aims to characterize the cultural domain of food plants and analyze its relation with current day diets, and the local perceptions of changes given amongst the Ngäbe people of Southern Conte-Burica, Costa Rica, as production of food plants by its residents is hypothesized to be drastically in recession with an decreased local production in the area and new conservation and development paradigms being implemented.
Methods
Extensive freelisting, interviews and workshops were used to collect the data from 72 participants on their knowledge of food plants, their current dietary practices and their perceptions of change in local foodways, while cultural domain analysis, descriptive statistical analyses and development of fundamental explanatory themes were employed to analyze the data.
Results
Results show a food plants domain composed of 140 species, of which 85 % grow in the area, with a medium level of cultural consensus, and some age-based variation. Although many plants still grow in the area, in many key species a decrease on local productionâeven abandonmentâwas found, with much reduced cultivation areas. Yet, the domain appears to be largely theoretical, with little evidence of use; and the diet today is predominantly dependent on foods bought from the store (more than 50 % of basic ingredients), many of which were not salient or not even recognized as âfood plantsâ in freelists exercises. While changes in the importance of food plants were largely deemed a result of changes in cultural preferences for store bought processed food stuffs and changing values associated with farming and being food self-sufficient, Ngäbe were also aware of how changing household livelihood activities, and the subsequent loss of knowledge and use of food plants, were in fact being driven by changes in social and political policies, despite increases in forest cover and biodiversity.
Conclusions
Ngäbe foodways are changing in different and somewhat disconnected ways: knowledge of food plants is varied, reflecting most relevant changes in dietary practices such as lower cultivation areas and greater dependence on food from stores by all families. We attribute dietary shifts to socioeconomic and political changes in recent decades, in particular to a reduction of local production of food, new economic structures and agents related to the State and globalization
Development of fluorescent probes for bioimaging applications
Fluorescent probes, which allow visualization of cations such as Ca2+, Zn2+ etc., small biomolecules such as nitric oxide (NO) or enzyme activities in living cells by means of fluorescence microscopy, have become indispensable tools for clarifying functions in biological systems. This review deals with the general principles for the design of bioimaging fluorescent probes by modulating the fluorescence properties of fluorophores, employing mechanisms such as acceptor-excited Photoinduced electron Transfer (a-PeT), donor-excited Photoinduced electron Transfer (d-PeT), and spirocyclization, which have been established by our group. The a-PeT and d-PeT mechanisms are widely applicable for the design of bioimaging probes based on many fluorophores and the spirocyclization process is also expected to be useful as a fluorescence off/on switching mechanism. Fluorescence modulation mechanisms are essential for the rational design of novel fluorescence probes for target molecules. Based on these mechanisms, we have developed more than fifty bioimaging probes, of which fourteen are commercially available. The review also describes some applications of the probes developed by our group to in vitro and in vivo systems
Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus
<p>Abstract</p> <p>Background</p> <p>Reactive gliosis has the potential to alter biomechanical properties of the brain, impede neuronal regeneration and affect plasticity. Determining the onset and progression of reactive astrogliosis and microgliosis due to hydrocephalus is important for designing better clinical treatments.</p> <p>Methods</p> <p>Reactive astrogliosis and microgliosis were evaluated as the severity of hydrocephalus increased with age in hydrocephalic H-Tx rats and control littermates. Previous studies have suggested that gliosis may persist after short-term drainage (shunt treatment) of the cerebrospinal fluid. Therefore shunts were placed in 15d hydrocephalic rats that were sacrificed after 6d (21d of age) or after 21d (36d of age). Tissue was processed for Western blot procedures and immunohistochemistry, and probed for the astrocytic protein, Glial Fibrillary Acidic Protein (GFAP) and for microglial protein, Isolectin B4 (ILB4).</p> <p>Results</p> <p>In the parietal cortex of untreated hydrocephalic animals, GFAP levels increased significantly at 5d and at 12d compared to age-matched control rats. There was a continued increase in GFAP levels over control at 21d and at 36d. Shunting prevented some of the increase in GFAP levels in the parietal cortex. In the occipital cortex of untreated hydrocephalic animals, there was a significant increase over control in levels of GFAP at 5d. This trend continued in the 12d animals, although not significantly. Significant increases in GFAP levels were present in 21d and in 36d animals. Shunting significantly reduced GFAP levels in the 36d shunted group. Quantitative grading of immuno-stained sections showed similar changes in GFAP stained astrocytes.</p> <p>Immuno-stained microglia were altered in shape in hydrocephalic animals. At 5d and 12d, they appeared to be developmentally delayed with a lack of processes. Older 21d and 36d hydrocephalic animals exhibited the characteristics of activated microglia, with thicker processes and enlarged cell bodies. Following shunting, fewer activated microglia were present.</p> <p>Histologic examination of the periventricular area and the periaqueductal area showed similar findings with the 21d and 36d animals having increased populations of both astrocytes and microglia which were reduced following shunting with a more dramatic reduction in the long term shunted animals.</p> <p>Conclusion</p> <p>Overall, these results suggest that reactive astrocytosis and microgliosis are associated with progressive untreated ventriculomegaly, but that shunt treatment can reduce the gliosis occurring with hydrocephalus.</p
Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method
FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L10 FePt was achieved for samples annealed at temperatures above 700 °C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and KellyâHenkel plots (ÎM measurement). The ÎM measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media
Mast Cells Express 11 beta-hydroxysteroid Dehydrogenase Type 1: A Role in Restraining Mast Cell Degranulation:a role in restraining mast cell degranulation
Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
- âŚ