579 research outputs found
Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder
Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder
A mutate-and-map protocol for inferring base pairs in structured RNA
Chemical mapping is a widespread technique for structural analysis of nucleic
acids in which a molecule's reactivity to different probes is quantified at
single-nucleotide resolution and used to constrain structural modeling. This
experimental framework has been extensively revisited in the past decade with
new strategies for high-throughput read-outs, chemical modification, and rapid
data analysis. Recently, we have coupled the technique to high-throughput
mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure
of not only that nucleotide but also its interaction partner. Carrying out the
mutation and mapping for the entire system gives an experimental approximation
of the molecules contact map. Here, we give our in-house protocol for this
mutate-and-map strategy, based on 96-well capillary electrophoresis, and we
provide practical tips on interpreting the data to infer nucleic acid
structure.Comment: 22 pages, 5 figure
Revealing the electronic structure of a carbon nanotube carrying a supercurrent
Carbon nanotubes (CNTs) are not intrinsically superconducting but they can
carry a supercurrent when connected to superconducting electrodes. This
supercurrent is mainly transmitted by discrete entangled electron-hole states
confined to the nanotube, called Andreev Bound States (ABS). These states are a
key concept in mesoscopic superconductivity as they provide a universal
description of Josephson-like effects in quantum-coherent nanostructures (e.g.
molecules, nanowires, magnetic or normal metallic layers) connected to
superconducting leads. We report here the first tunneling spectroscopy of
individually resolved ABS, in a nanotube-superconductor device. Analyzing the
evolution of the ABS spectrum with a gate voltage, we show that the ABS arise
from the discrete electronic levels of the molecule and that they reveal
detailed information about the energies of these levels, their relative spin
orientation and the coupling to the leads. Such measurements hence constitute a
powerful new spectroscopic technique capable of elucidating the electronic
structure of CNT-based devices, including those with well-coupled leads. This
is relevant for conventional applications (e.g. superconducting or normal
transistors, SQUIDs) and quantum information processing (e.g. entangled
electron pairs generation, ABS-based qubits). Finally, our device is a new type
of dc-measurable SQUID
Phase I trial of intravesical Suramin in recurrent superficial transitional cell bladder carcinoma
Suramin is an antitrypanosomal agent with antineoplastic activity, but with serious systemic side effects. We administered Suramin intravesically to determine a concentration with low toxicity but with evidence of a pharmacodynamic effect, to recommend a dose level for phase II trials. This was an open-labelled, nonrandomised dose-escalation phase I study. In all, 12 patients with a history of recurrent superficial bladder cancer were grouped into four dose levels (10–150 mg ml−1 in 60 ml saline). Six catheter instillations at weekly intervals were used. Cystoscopy and biopsy were performed before and 3 months after the start of treatment. Suramin was assayed using high-performance liquid chromatography, vascular endothelial growth factor (VEGF) using ELISA (enzyme-linked immunosorbent assay), and urinary protein profile using surface-enhanced laser desorption ionisation mass spectroscopy (SELDI). Minimal systemic absorption of Suramin was found at the highest dose of 150 mg ml−1. Urinary VEGF was affected by Suramin at doses above 50 mg ml−1, corresponding to the estimated threshold of saturation of Suramin binding to urine albumin. SELDI showed a specific disappearance of urinary protein peaks during treatment. Intravesical Suramin shows lack of toxicity and low systemic absorption. The results of this phase I trial support expanded clinical trials of efficacy at a dose of 100 mg ml−1 intravesically
Epithelial to Mesenchymal Transition by TGFβ-1 Induction Increases Stemness Characteristics in Primary Non Small Cell Lung Cancer Cell Line
Cancer Stem Cells (CSCs) hypothesis asserts that only a small subset of cells within a tumour is capable of both tumour initiation and sustainment. The Epithelial-Mesenchymal Transition (EMT) is an embryonic developmental program that is often activated during cancer invasion and metastasis. The aim of this study is to shed light on the relationship between EMT and CSCs by using LC31 lung cancer primary cell line.A549 and LC31 cell lines were treated with 2 ng/ml TGFβ-1 for 30 days, and 80 days, respectively. To evaluate EMT, morphological changes were assessed by light microscopy, immunofluorescence and cytometry for following markers: cytokeratins, e-cadherin, CD326 (epithelial markers) and CD90, and vimentin (mesenchymal markers). Moreover, RT-PCR for Slug, Twist and β-catenin genes were performed. On TGFβ-1 treated and untreated LC31 cell lines, we performed stemness tests such as pneumospheres growth and stem markers expression such as Oct4, Nanog, Sox2, c-kit and CD133. Western Blot for CD133 and tumorigenicity assays using NOD/SCID mice were performed.TGFβ-1 treated LC31 cell line lost its epithelial morphology assuming a fibroblast-like appearance. The same results were obtained for the A549 cell line (as control). Immunofluorescence and cytometry showed up-regulation of vimentin and CD90 and down-regulation of cytocheratin, e-cadherin and CD326 in TGFβ-1 treated LC31 and A549 cell lines. Slug, Twist and β-catenin m-RNA transcripts were up-regulated in TGFβ-1 treated LC31 cell line confirming EMT. This cell line showed also over-expression of Oct4, Nanog, Sox2 and CD133, all genes of stemness. In addition, in TGFβ-1 treated LC31 cell line, an increased pneumosphere-forming capacity and tumours-forming ability in NOD/SCID mice were detectable.The induction of EMT by TGFβ-1 exposure, in primary lung cancer cell line results in the acquisition of mesenchymal profile and in the expression of stem cell markers
Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-seq Protocol
Chemical mapping methods probe RNA structure by revealing and leveraging
correlations of a nucleotide's structural accessibility or flexibility with its
reactivity to various chemical probes. Pioneering work by Lucks and colleagues
has expanded this method to probe hundreds of molecules at once on an Illumina
sequencing platform, obviating the use of slab gels or capillary
electrophoresis on one molecule at a time. Here, we describe optimizations to
this method from our lab, resulting in the MAP-seq protocol (Multiplexed
Accessibility Probing read out through sequencing), version 1.0. The protocol
permits the quantitative probing of thousands of RNAs at once, by several
chemical modification reagents, on the time scale of a day using a table-top
Illumina machine. This method and a software package MAPseeker
(http://simtk.org/home/map_seeker) address several potential sources of bias,
by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters,
and avoiding problematic heuristics in prior algorithms. We hope that the
step-by-step description of MAP-seq 1.0 will help other RNA mapping
laboratories to transition from electrophoretic to next-generation sequencing
methods and to further reduce the turnaround time and any remaining biases of
the protocol.Comment: 22 pages, 5 figure
Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach
The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data
- …