103 research outputs found

    Multimodal assessment of painful peripheral neuropathy induced by chronic oxaliplatin-based chemotherapy in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major clinical issue affecting 10-40% of cancer patients treated with oxaliplatin is severe peripheral neuropathy with symptoms including cold sensitivity and neuropathic pain. Rat models have been used to describe the pathological features of oxaliplatin-induced peripheral neuropathy; however, they are inadequate for parallel studies of oxaliplatin's antineoplastic activity and neurotoxicity because most cancer models are developed in mice. Thus, we characterized the effects of chronic, bi-weekly administration of oxaliplatin in BALB/c mice. We first studied oxaliplatin's effects on the peripheral nervous system by measuring caudal and digital nerve conduction velocities (NCV) followed by ultrastructural and morphometric analyses of dorsal root ganglia (DRG) and sciatic nerves. To further characterize the model, we examined nocifensive behavior and central nervous system excitability by <it>in vivo </it>electrophysiological recording of spinal dorsal horn (SDH) wide dynamic range neurons in oxaliplatin-treated mice</p> <p>Results</p> <p>We found significantly decreased NCV and action potential amplitude after oxaliplatin treatment along with neuronal atrophy and multinucleolated DRG neurons that have eccentric nucleoli. Oxaliplatin also induced significant mechanical allodynia and cold hyperalgesia, starting from the first week of treatment, and a significant increase in the activity of wide dynamic range neurons in the SDH.</p> <p>Conclusions</p> <p>Our findings demonstrate that chronic treatment with oxaliplatin produces neurotoxic changes in BALB/c mice, confirming that this model is a suitable tool to conduct further mechanistic studies of oxaliplatin-related antineoplastic activity, peripheral neurotoxicity and pain. Further, this model can be used for the preclinical discovery of new neuroprotective and analgesic compounds.</p

    Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish

    Get PDF
    Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCTinfo:eu-repo/semantics/publishedVersio

    Fold change and p-value cutoffs significantly alter microarray interpretations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As context is important to gene expression, so is the preprocessing of microarray to transcriptomics. Microarray data suffers from several normalization and significance problems. Arbitrary fold change (FC) cut-offs of >2 and significance p-values of <0.02 lead data collection to look only at genes which vary wildly amongst other genes. Therefore, questions arise as to whether the biology or the statistical cutoff are more important within the interpretation. In this paper, we reanalyzed a zebrafish (<it>D. rerio</it>) microarray data set using GeneSpring and different differential gene expression cut-offs and found the data interpretation was drastically different. Furthermore, despite the advances in microarray technology, the array captures a large portion of genes known but yet still leaving large voids in the number of genes assayed, such as leptin a pleiotropic hormone directly related to hypoxia-induced angiogenesis.</p> <p>Results</p> <p>The data strongly suggests that the number of differentially expressed genes is more up-regulated than down-regulated, with many genes indicating conserved signalling to previously known functions. Recapitulated data from Marques et al. (2008) was similar but surprisingly different with some genes showing unexpected signalling which may be a product of tissue (heart) or that the intended response was transient.</p> <p>Conclusions</p> <p>Our analyses suggest that based on the chosen statistical or fold change cut-off; microarray analysis can provide essentially more than one answer, implying data interpretation as more of an art than a science, with follow up gene expression studies a must. Furthermore, gene chip annotation and development needs to maintain pace with not only new genomes being sequenced but also novel genes that are crucial to the overall gene chips interpretation.</p

    Redefining risk research priorities for nanomaterials

    Get PDF
    Chemical-based risk assessment underpins the current approach to responsible development of nanomaterials (NM). It is now recognised, however, that this process may take decades, leaving decision makers with little support in the near term. Despite this, current and near future research efforts are largely directed at establishing (eco)toxicological and exposure data for NM, and comparatively little research has been undertaken on tools or approaches that may facilitate near-term decisions, some of which we briefly outline in this analysis. We propose a reprioritisation of NM risk research efforts to redress this imbalance, including the development of more adaptive risk governance frameworks, alternative/complementary tools to risk assessment, and health and environment surveillance

    A framework for integrated environmental health impact assessment of systemic risks

    Get PDF
    Traditional methods of risk assessment have provided good service in support of policy, mainly in relation to standard setting and regulation of hazardous chemicals or practices. In recent years, however, it has become apparent that many of the risks facing society are systemic in nature – complex risks, set within wider social, economic and environmental contexts. Reflecting this, policy-making too has become more wide-ranging in scope, more collaborative and more precautionary in approach. In order to inform such policies, more integrated methods of assessment are needed. Based on work undertaken in two large EU-funded projects (INTARESE and HEIMTSA), this paper reviews the range of approaches to assessment now in used, proposes a framework for integrated environmental health impact assessment (both as a basis for bringing together and choosing between different methods of assessment, and extending these to more complex problems), and discusses some of the challenges involved in conducting integrated assessments to support policy

    Bone mass in schizophrenia and normal populations across different decades of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic schizophrenic patients have been reported as having higher osteoporosis prevalence. Survey the bone mass among schizophrenic patients and compare with that of the local community population and reported data of the same country to figure out the distribution of bone mass among schizophrenic patients.</p> <p>Methods</p> <p>965 schizophrenic patients aged 20 years and over in Yuli Veterans Hospital and 405 members aged 20 and over of the community living in the same town as the institute received bone mass examination by a heel qualitative ultrasound (QUS) device. Bone mass distribution was stratified to analyzed and compared with community population.</p> <p>Results</p> <p>Schizophrenic patients have lower bone mass while they are young. But aging effect on bone mass cannot be seen. Accelerated bone mass loss during menopausal transition was not observed in the female schizophrenic patients as in the subjects of the community female population.</p> <p>Conclusion</p> <p>Schizophrenic patients have lower bone mass than community population since they are young. Further study to investigate the pathophysiological process is necessary to delay or avoid the lower bone mass in schizophrenia patients.</p

    dyschronic, a Drosophila Homolog of a Deaf-Blindness Gene, Regulates Circadian Output and Slowpoke Channels

    Get PDF
    Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc). dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO), an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein–protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system

    Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus)

    Get PDF
    Background: The Nile tilapia is the second most important fish in aquaculture. It is an excellent laboratory model, and is closely related to the African lake cichlids famous for their rapid rates of speciation. A suite of genomic resources has been developed for this species, including genetic maps and ESTs. Here we analyze BAC endsequences to develop comparative physical maps, and estimate the number of genome rearrangements, between tilapia and other model fish species. Results: We obtained sequence from one or both ends of 106,259 tilapia BACs. BLAST analysis against the genome assemblies of stickleback, medaka and pufferfish allowed identification of homologies for approximately 25,000 BACs for each species. We calculate that rearrangement breakpoints between tilapia and these species occur about every 3 Mb across the genome. Analysis of 35,000 clones previously assembled into contigs by restriction fingerprints allowed identification of longer-range syntenies. Conclusions: Our data suggest that chromosomal evolution in recent teleosts is dominated by alternate loss of gene duplicates, and by intra-chromosomal rearrangements (~one per million years). These physical maps are a useful resource for comparative positional cloning of traits in cichlid fishes. The paired BAC end sequences from these clones will be an important resource for scaffolding forthcoming shotgun sequence assemblies of the tilapia genome. (Résumé d'auteur

    CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila

    Get PDF
    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.ope
    corecore