54,544 research outputs found

    Beyond LLM in M-theory

    Get PDF
    The Lin, Lunin, Maldacena (LLM) ansatz in D = 11 supports two independent Killing directions when a general Killing spinor ansatz is considered. Here we show that these directions always commute, identify when the Killing spinors are charged, and show that both their inner product and resulting geometry are governed by two fundamental constants. In particular, setting one constant to zero leads to AdS7 x S4, setting the other to zero gives AdS4 x S7, while flat spacetime is recovered when both these constants are zero. Furthermore, when the constants are equal, the spacetime is either LLM, or it corresponds to the Kowalski-Glikman solution where the constants are simply the mass parameter.Comment: 1+30 pages, footnote adde

    Rigidity of SU(2,2|2)-symmetric solutions in Type IIB

    Get PDF
    We investigate the existence of half-BPS solutions in Type IIB supergravity which are invariant under the superalgebra SU(2,2|2) realized on either AdS_5 x S^2 x S^1 or AdS_5 x S^3 warped over a Riemann surface \Sigma with boundary. We prove that, in both cases, the only solution is AdS_5 x S^5 itself. We argue that this result provides evidence for the non-existence of fully back-reacted intersecting D3/D7 branes with either AdS_5 x S^2 x S^1 x \Sigma or AdS_5 x S^3 x \Sigma near-horizon limits.Comment: 55 page

    Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces

    Get PDF
    The aim of this study was to assess the impact of three ampicillin dosage regimens on ampicillin resistance among Enterobacteriaceae recovered from swine feces using phenotypic and genotypic approaches. Phenotypically, ampicillin resistance was determined from the percentage of resistant Enterobacteriaceae and MICs of E. coli isolates. The pool of ampicillin resistance genes was also monitored by quantification of blaTEM genes, which code for the most frequently produced ÎČ-lactamases in Gram-negative bacteria, using a newly-developed real-time PCR assay. Ampicillin was administered intramuscularly and by oral route to fed or fasted pigs for 7 days at 20 mg/kg. The average percentage of resistant Enterobacteriaceae before treatment was between 2.5% and 12% and blaTEM genes quantities were below 107 copies/g of feces. By days four and seven, the percentage of resistant Enterobacteriaceae exceeded 50% in all treated groups, with some highly resistant strains (MIC>256”g/mL). In the control group, blaTEM genes quantities fluctuated between 104 - 106 copies/g of feces, whereas they fluctuated between 106-108 and 107-109 copies/g of feces for intramuscular and oral routes, respectively. Whereas phenotypic evaluations did not discriminate between the three ampicillin dosage regimens, blaTEM genes quantification was able to differentiate between the effects of two routes of ampicillin administration. Our results suggest that fecal blaTEM genes quantification provides a sensitive tool to evaluate the impact of ampicillin administration on the selection of ampicillin resistance in the digestive microflora and its dissemination in the environment

    Solution heat treatment, forming and in-die quenching of a commercial sheet magnesium alloy into a complex-shaped component: experimentation and FE analysis

    Get PDF
    Interest in lightweight materials, particularly magnesium alloys, has increased significantly with rising efficiency requirements in the automotive sector. Magnesium is the lightest available structural metal, with a density approximately 35% lower than that of aluminium. The potential is great for magnesium to become a primary material used in future low carbon vehicle structures; however, there are significant obstacles, namely low ductility and formability, particularly at room temperature. The aim of this work is to present the feasibility of using the solution Heat treatment, Forming, and in-die Quenching (HFQ) process to produce complex shapes from a sheet magnesium alloy, and to use the results to verify a simulation of the process developed using commercial FE software. Uniaxial tensile tests were initially conducted to establish the optimum parameters for forming the part. Stamping trials were then carried out using these parameters, and a simulation set up modelling the forming operation. It was shown that the HFQ process could be used to form a successful component from this alloy, and that a good match was achieved between the results of the forming experiments and the simulation.The authors gratefully acknowledge the support from the EPSRC (Grant Ref: EP/I038616/1) for TARF-LCV: Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures

    Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds

    Full text link
    We discuss the dimensional reduction of fermionic modes in a recently found class of consistent truncations of type IIB supergravity compactified on squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower dimensional equations of motion and effective action, and comment on the supersymmetry of the resulting theory, which is consistent with N=4 gauged supergravity in d=5d=5, coupled to two vector multiplets. We compute fermion masses by linearizing around two AdS5AdS_{5} vacua of the theory: one that breaks N=4 down to N=2 spontaneously, and a second one which preserves no supersymmetries. The truncations under consideration are noteworthy in that they retain massive modes which are charged under a U(1) subgroup of the RR-symmetry, a feature that makes them interesting for applications to condensed matter phenomena via gauge/gravity duality. In this light, as an application of our general results we exhibit the coupling of the fermions to the type IIB holographic superconductor, and find a consistent further truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected, minor change

    An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth-directed. Here we report a rare instance with comprehensive in situ and remote sensing observa- tions of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white light CME recon- struction. We find that the radio emission arises from the flanks of the CME, and are most likely associated with the CME-driven shock. Our work demon- strates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of ÎŽ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    The Detectability Limit of Organic Molecules Within Mars South Polar Laboratory Analogs

    Get PDF
    A series of laboratory experiments was carried out in order to generate a diagnostic spectrum for Polycyclic Aromatic Hydrocarbons (PAHs) of astrobiological interest in the context of the Martian South Polar Residual Cap (SPRC), to establish PAH spectral features more easily detectable in CO2 ice (mixed with small amounts of H2O ice) than the previously reported absorption feature at 3.29 ”m in order to constrain their detectability limit. There is currently no existing literature on PAH detection within SPRC features, making this work novel and impactful given the recent discovery of a possible subglacial lake beneath the Martian South Pole. Although they have been detected in Martian meteorites, PAHs have not been detected yet on Mars, possibly due to the deleterious effects of ultraviolet radiation on the surface of the planet. SPRC features may provide protection to fragile molecules, and this work seeks to provide laboratory data to improve interpretation of orbital remote sensing spectroscopic imaging data. We also ascertain the effect of CO2 ice sublimation on organic spectra, as well as provide PAH reference spectra in mixtures relevant to Mars. A detectability limit of ∌0.04% has been recorded for observing PAHs in CO2 ice using laboratory instrument parameters emulating those of the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), with new spectral slope features revealed between 0.7 and 1.1 ”m, and absorption features at 1.14 and, most sensitively, at 1.685 ”m. Mars regolith analogue mixed with a concentration of 1.5% PAHs resulted in no discernible organic spectral features. These detectability limits measured in the laboratory are discussed and extrapolated to the effective conditions on the Mars South Polar Cap in terms of dust and water ice abundance and CO2 ice grain size for both the main perennial cap and the H2O ice-dust sublimation lag deposit

    Four-Dimensional SCFTs from M5-Branes

    Full text link
    We engineer a large new set of four-dimensional N=1 superconformal field theories by wrapping M5-branes on complex curves. We present new supersymmetric AdS_5 M-theory backgrounds which describe these fixed points at large N, and then directly construct the dual four-dimensional CFTs for a certain subset of these solutions. Additionally, we provide a direct check of the central charges of these theories by using the M5-brane anomaly polynomial. This is a companion paper which elaborates upon results reported in arXiv:1112:5487.Comment: 45 pages, 11 figure

    Time-resolved pump-probe spectroscopy with spectral domain ghost imaging

    Get PDF
    An atomic-level picture of molecular and bulk processes, such as chemical bonding and charge transfer, necessitates an understanding of the dynamical evolution of these systems. On the ultrafast timescales associated with nuclear and electronic motion, the temporal behaviour of a system is often interrogated in a 'pump-probe' scheme. Here, an initial 'pump' pulse triggers dynamics through photoexcitation, and after a carefully controlled delay a 'probe' pulse initiates projection of the instantaneous state of the evolving system onto an informative measurable quantity, such as electron binding energy. In this paper, we apply spectral ghost imaging to a pump-probe time-resolved experiment at an X-ray free-electron laser (XFEL) facility, where the observable is spectral absorption in the X-ray regime. By exploiting the correlation present in the shot-to-shot fluctuations in the incoming X-ray pulses and measured electron kinetic energies, we show that spectral ghost imaging can be applied to time-resolved pump-probe measurements. In the experiment presented, interpretation of the measurement is simplified because spectral ghost imaging separates the overlapping contributions to the photoelectron spectrum from the pump and probe pulse
    • 

    corecore