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The aim of this study was to assess the impact of three ampicillin dosage regimens on 

ampicillin resistance among Enterobacteriaceae recovered from swine feces using phenotypic 

and genotypic approaches. Phenotypically, ampicillin resistance was determined from the 

percentage of resistant Enterobacteriaceae and MICs of E. coli isolates. The pool of 

ampicillin resistance genes was also monitored by quantification of blaTEM genes, which code 

for the most frequently produced �-lactamases in Gram-negative bacteria, using a newly-

developed real-time PCR assay. Ampicillin was administered intramuscularly and by oral 

route to fed or fasted pigs for 7 days at 20 mg/kg. The average percentage of resistant 

Enterobacteriaceae before treatment was between 2.5% and 12% and blaTEM genes quantities 

were below 107 copies/g of feces. By days four and seven, the percentage of resistant 

Enterobacteriaceae exceeded 50% in all treated groups, with some highly resistant strains 

(MIC>256μg/mL). In the control group, blaTEM genes quantities fluctuated between 104 - 106 

copies/g of feces, whereas they fluctuated between 106-108 and 107-109 copies/g of feces for 

intramuscular and oral routes, respectively. Whereas phenotypic evaluations did not 

discriminate between the three ampicillin dosage regimens, blaTEM genes quantification was 

able to differentiate between the effects of two routes of ampicillin administration. Our results 

suggest that fecal blaTEM genes quantification provides a sensitive tool to evaluate the impact 

of ampicillin administration on the selection of ampicillin resistance in the digestive 

microflora and its dissemination in the environment. 
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The major mechanism of resistance to �-lactam antibiotics in Gram-negative bacteria 

results from the production of �-lactamases. Most of these are coded by the plasmid-mediated 

blaTEM-1 gene (19, 28). The continuous introduction of new �-lactam antibiotics with different 

activity spectra in human medicine has led to the selection of �-lactamase mutations, which 

confer resistance to the newly-developed �-lactam antibiotics (25). �-lactam antibiotics are 

also used in veterinary medicine where they contribute to the selective pressure that leads to 

the emergence and diffusion of intestinal bacteria harboring resistance genes. Thus, 

commensal bacteria in the gut form a reservoir of antibiotic resistance genes potentially 

transmissible to humans via the food-chain and the environment (27, 29, 34).  

Antimicrobial resistance in food animals deserves special attention. One of the most 

heavily medicated sectors is pig-farming, world-wide antibiotic consumption in pigs 

accounting for 60% of the antibiotics used in animals (10). A relationship has been 

demonstrated between the high use of antimicrobials in pig herds and increased occurrence of 

resistant bacterial strains in their digestive tracts (4, 13, 34, 37).When antibiotics are 

administered to pigs, both the level and time-development of antibiotic exposure of the 

intestinal microflora are dependent on the mode of drug administration (38). This exposure is 

a key determinant of antibiotic resistance development in the gut flora, and the relation 

between antibiotic dosage regimen and resistance merits attention. The impact of different 

antibiotic dosage regimens on the emergence of resistance must be evaluated by appropriate 

quantitative indicators of the resistance level. Traditionally, this has involved phenotypic 

methods that measure bacterial antibiotic susceptibility (32). In addition, quantitative PCR has 

been recommended for resistance genes surveillance because i) it is sensitive ii) unambiguous 
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standard curves can be used to quantify the resistance genes from various matrices and iii) no 

bacterial cultivation is required (15, 20, 31, 39). 

The aim of the present study was both to develop and validate a real-time PCR assay 

to quantify fecal blaTEM genes in swine stools, and to explore the impact of three different 

ampicillin dosage regimens on fecal ampicillin resistance in swine using different indicators. 

Ampicillin resistance was evaluated by quantifying the blaTEM genes in feces by real-time 

PCR assay associated with two conventional phenotypic methods based on determination of 

the MICs of E. coli isolates and the percentage of resistant Enterobacteriaceae. The three 

dosage regimens tested were: intramuscular route, oral route in fed and oral route in fasted 

swine. 
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Study design and sample collection. Eighteen 7-week old, commercial healthy 

piglets, that had never received antibiotics, were used. They were housed separately in 

individual pens throughout all the experiments. A meal was given twice daily and water was 

provided ad libitum. Ampicillin was administered once a day at 20 mg/kg for seven days 

(from day 0 to day 6) following three modalities: intramuscular route, oral route in fasted pigs 

or oral route in fed pigs. The design schedule consisted of three successive series of 6 animals 

receiving ampicillin treatments as follows: intramuscular (n=2), oral route in fed conditions 

(n=2), control without treatment (n=2) in the first series; intramuscular (n=2), oral route in 

fasted conditions (n=2), control without treatment (n=2) in the second series; oral route in fed 

conditions (n=2), oral route in fasted conditions (n=2), control without treatment (n=2) in the 

third series. Six pigs were used in the control group and 4 pigs in each ampicillin treatment 

group. Intramuscular injections of ampicillin sodium (Ampicilline Cadril, Laboratory 

Coophavet, Ancenis, France) were administered in the neck. For oral routes, a medicinal 

premix (Ampicilline 80 Porc Franvet, Laboratory Franvet, Segré, France) was dissolved in 

water and administered by gastric intubation. Fasted swine were starved 16 hours before 

ampicillin administration and fed 4 hours after ampicillin administration. Ampicillin was 

administered to fed pigs just at the end of their morning meal.  

For phenotypic evaluation of ampicillin resistance, fecal samples were taken from 

each pig, by digital manipulation or immediately after spontaneous defecation, at days 0 

(before ampicillin administration), 1, 4, and 7. The samples were immediately transferred to 

the laboratory and the Enterobacteriaceae were counted. For the quantification of blaTEM 

genes in feces by real-time PCR, feces of each pig were collected two or three times before 

the treatment. The value given for day 0 is the mean of these samplings. Feces were then 

collected each day from day 1 to day 7. Samples were obtained as already described. Two 
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hundred mg of feces from each sample were frozen in liquid nitrogen and stored at -80°C 

until assayed. 

Phenotypic evaluation of ampicillin resistance. Feces (5 g) from each pig were 

homogenized with 45 mL of peptone water, including 30% of glycerol, with a BagMixer 

(Interscience, St Nom, France). Ten-fold serial dilutions of the filtrate were prepared and 100 

μL of the dilutions were spread on MacConkey plates (AEB 151602, AES, Ker Lann, France) 

containing 0 and 16 μg/mL of ampicillin. MacConkey agar is classically used for selective 

growth of Enterobacteriaceae (7, 8, 11, 30). Enterobacteriaceae growing in the presence of 

16 μg/mL of ampicillin were classified as resistant. This concentration corresponds to the 

MIC breakpoint value (MIC � 32 μg/mL) proposed by the CLSI (23) and the French Society 

of Microbiology (http://www.sfm.asso.fr). The plates were incubated at 37°C for 24 h. 

Enterobacteriaceae counts from both plates were used to calculate the percentage of resistant 

Enterobacteriaceae at each sampling time.  

For each sample, 20 colonies were randomly picked on the MacConkey plates without 

ampicillin and stored at -80°C until assayed. These colonies were considered as E. coli on the 

basis of �-glucuronidase production using TBX agar (Tryptone Bile X-glucuronide agar, AES 

laboratoire, Bruz, France) (14). Only a few colonies were �-glucuronidase negative. All �-

glucuronidase negative isolates and a portion of �-glucuronidase positive isolates were tested 

by the API 20E Enterobacteriaceae identification system (bioMérieux, Marcy l’Etoile, 

France) to confirm their identification. For MICs determination, ampicillin susceptibility was 

tested by microdilution broth dilution method according to the recommendations reported by 

the CLSI (22). The control strain was E. coli ATCC 25922.  

Bacteria and growth conditions. E. coli JS238[pOFX326], the plasmid of which 

carries a monocopy of the target gene blaTEM-1, was used to optimize real-time PCR, assess 
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sensitivity and generate quantification standards. The strain was cultured in Mueller-Hinton 

broth containing ampicillin at the concentration of 50 μg/mL at 37°C overnight. 

DNA extraction. pOFX326 was purified with the QIAprep Spin Miniprep (Qiagen, 

Hilden, Germany). Quality was assessed by migration on gel electrophoresis in 1% agarose, 

after digestion with HindIII and concentration was assessed by spectrophotometry at 260 nm. 

The QIAamp DNA Stool kit (Qiagen, Hilden, Gremany) was used to extract DNA from feces 

according to manufacturer’s recommendations. For each series of extractions, a positive 

control and a negative control were co-extracted and subjected to real-time PCR. 

Design of primers. The PCR primers were designed with Pimer 3 and Oligo 

Analyser. The specificity of the sequence was further checked against all the available 

GenBank DNA sequences. The forward and reverse primers chosen for blaTEM genes 

quantification were 5’-TTCCTGTTTTTGCTCACCCAG-3’ and 5’-

CTCAAGGATCTTACCGCTGTTG-3’, respectively. These primers amplify a 112 bp 

segment of the blaTEM-1D gene (GeneBank accession number AF 1888200) from nucleotide 

positions 270 to 382. A 100% homology was demonstrated with 130 blaTEM genes for which 

the nucleotide sequence was available, except for TEM-60. 

Real-time PCR assay. The PCR amplification was performed in a 25 μL reaction 

mixture with a SYBR Green PCR Core Reagents kit (Perkin Elmer Biosystems, Foster City, 

USA). The reaction mixture contained 5 μL of test DNA solution, 2.5 μL of 10X SYBR 

Green PCR Buffer, 1.6 μL of a deoxynucleoside triphosphate solution (2.5 mM each of 

dATP, dCTP and dGTP and 5 mM of dUTP), 0.25 μL of each primer (20 μM), 4 μL of 25 

mM MgCl2, 11.275 μL of Ultra Pure Water (Qbiogene, Montréal, Canada) and 0.125 μL of 

AmpliTaq Gold� DNA Polymerase, LD (5 U/�L) (Perkin Elmer Biosystems). Amplification 

was performed using a GeneAmp� PCR System 5700 thermocycler (Perkin Elmer 

Biosystems) with the following conditions: 95°C for 10 min followed by 45 cycles of 15 
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seconds at 95°C and 1 minute at 60°C. A standard curve with three replicates of the control 

plasmid pOFX326 diluted in Tris-EDTA buffer was generated for each PCR assay. All 

sample PCRs were done in duplicate. The samples were checked for absence of  background 

levels of PCR-inhibiting compounds by spiking DNA extracted from the samples with target 

DNA and subjecting these spiked DNA samples to real-time PCR both undiluted and diluted 

(1:10). 
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The impact of DNA fecal environment on amplification sensitivity and performance was 

assessed by comparing standard curves obtained with the control plasmid diluted in Tris-

EDTA or in swine fecal DNA. The accuracy and reproducibility of the entire assay (from 

DNA extraction to real time PCR analysis) was measured by spiking 200 mg of feces with an 

overnight  culture of E. coli JS238[pOFX326]. Five aliquots per day were subjected to DNA 

extraction on three different days. The extraction recovery rate was calculated. It was checked 

to be the same for different concentrations of blaTEM genes in feces by spiking fecal samples 

with 10-fold serial dilutions of an overnight culture of E. coli JS238[pOFX326]. These 

samples were subjected to DNA extraction and then to real-time PCR. 

Statistical analysis. Statistical analysis was performed using Systat 10 (Systat 

Software Inc., Richmond, CA, USA). Changes in the level of ampicillin resistance were 

analyzed using a generalized linear mixed-effects model with the following equation:  

166 
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Yijk = � + Mi + Dj + 
iMkA  + M*Dij + �ijk, 

where Yijk is the measure of resistance for pig k undergoing ampicillin administration with  

modality i at day j, � the overall mean, Mi the differential effect of treatment i, Dj the 

differential effect of day j, M*Dij the corresponding interaction, 
iMkA  the differential effect 

of animal k nested within treatment i and �

169 
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ijk an error term. Y, the measure of resistance, was 

monitored in various ways. For the phenotypic evaluation of resistance, Y was the log-

transformed percentage of the resistant Enterobacteriaceae population or the log-transformed 
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percentage of E. coli isolates with MIC > 16 μg/ml. For the genotypic evaluation, Y was the 

log-transformed quantity of bla
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TEM genes. Multiple comparisons were performed using the 

Tukey test.  The selected level of significance was P<0.05. 
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Validation of the PCR assay. In order to construct calibration curves and determine 

the specificity and sensitivity of the primers in swine fecal DNA, the control plasmid 

pOFX326 was diluted in Tris-EDTA buffer and in swine fecal DNA. Each dilution was 

subjected to real time PCR and the amplifications were repeated four times. Melting-curve 

analysis of the control plasmid, diluted either in Tris-EDTA buffer or in swine fecal DNA, 

showed specific amplification with a PCR amplicon at a Tm value of 81°C (data not shown). 

Despite the use of highly purified AmpliTaq Gold� DNA Polymerase, analysis of the Ultra-

Pure Water melting-curves revealed contamination and thus restricted the PCR quantification 

limit (data not shown). Fig. 1 shows the two standard curves: the relation between Ct 

(threshold cycles) values and the logarithm of blaTEM concentration was linear from 10 to 106 

copies/μL. The determination coefficients (r2) were of 0.996 in Tris-EDTA and 0.985 in 

swine fecal DNA. The closeness between these standard curves indicated that the complex 

fecal DNA environment did not affect amplification sensitivity or performance. The intra- and 

inter-day coefficients of variation of the entire assay (from DNA extraction to real time PCR 

analysis) were 16.7% and 18.2%, respectively. The extraction recovery rate was 70-113% 

(mean 98.5 %). This was checked to be the same for different concentrations of blaTEM genes 

in feces by spiking fecal samples with 10-fold serial dilutions of an overnight culture of E. 

coli JS238[pOFX326]. The correlation between blaTEM copy number/g feces and dilution 

factors of the JS238[pOFX326] solution was high (with a determination coefficient, 

r2=0.904). Thus the extraction yields for different concentrations of E. Coli JS238[pOFX326] 

in feces were similar. Overall data demonstrated that this PCR analysis was suitable for 

quantification of blaTEM genes in swine feces from 10 to 106 copies/μL of eluate of extracted 

DNA, which corresponds to 104 to 109 copies/g of feces. 
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Phenotypic evaluation of ampicillin resistance. Average percentages of ampicillin- 

resistant Enterobacteriaceae for each treatment group are given in Fig. 2a. The average 

percentage of resistant Enterobacteriaceae ranged from 0.9% to 12% before ampicillin 

administration. On the first day of treatment, it rose to 26% for the intramuscular route and to 

40% and 49% for the oral routes in fed and fasted pigs respectively. By days 4 and 7, the level 

of resistance exceeded 50% in all treated groups. In contrast, the level of resistance in the 

control group remained below 13% at all times. Treated animals excreted significantly higher 

percentages of resistant Enterobacteriaceae compared to the control group (P<0.05). 

However, no significant differences were observed between the three modes of drug 

administration (P>0.05). Furthermore, Fig. 2a shows the high inter-individual variability 

within each group. 
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Ampicillin resistance was also monitored from the percentage of resistant E. coli 

isolates for each treatment group (Fig. 2b). The average percentage of resistant E. coli ranged 

from 1% to 38% before ampicillin administration. At day 1 of treatment, about 70% of 

isolates were resistant, whatever the mode of drug administration. By days 4 and 7, nearly all 

the isolates, whatever the dosage regimen, were resistant. In contrast, the percentages of 

resistant E. coli remained below 36% in the control group. Statistical analysis indicated that 

oral administration in fed pigs led to a higher fecal excretion of resistant E. coli than in 

control pigs (P<0.05). The two other dosage regimens did not differ significantly from the 

control group due to the great heterogeneity of the control group data (P>0.05). High inter-

individual variability also existed within each ampicillin-treated group. 

Genotypic evaluation of ampicillin resistance. Ampicillin resistance in feces was 

measured by blaTEM genes quantification using the validated PCR assay. blaTEM genes copy 

numbers per gram of wet feces were measured on each day of treatment for each pig (Fig. 3). 

The baseline values for all pigs were below 107 copies/g of feces. blaTEM quantities increased 
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after ampicillin administration. The between-day fluctuations for a given animal were large. 

The bla
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TEM quantities for the oral routes fluctuated between 107 and 109 copies/g of feces, but 

only between 105 and 108 copies/g of feces for the intramuscular route. Two fed pigs treated 

by oral route excreted the highest blaTEM quantities with values above 109 copies/g of feces. 

The blaTEM quantities for the control group were lower than those of the three ampicillin-

treated groups and fluctuated between 104 and 106 copies/g of feces.  

Fig. 4 shows the mean quantities of blaTEM genes for each dosage regimen. Statistical 

analysis indicated that all ampicillin treatments had a significant effect on the excretion of 

blaTEM genes compared to the control group (P<0.001). Moreover, oral administration in fed 

pigs led to a significantly higher excretion of blaTEM genes than intramuscular administration 

(P<0.05).  

Comparisons of real time PCR assessments and phenotypic plate assays. We 

investigated the agreement between resistant Enterobacteriaceae counts and blaTEM 

concentrations. Fig. 5 shows a significant correlation (with a determination coefficient, 

r2=0.67) between the quantities of blaTEM genes and the counts of ampicillin-resistant 

Enterobacteriaceae.  
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The aim of this study was to explore the impact of three ampicillin dosage regimens 

on the selection of ampicillin resistance in swine feces. Three indicators of ampicillin 

resistance i.e. two classical phenotypic methods and a new genotypic method allowing 

quantification of blaTEM genes in feces were selected. The results, whichever resistance 

indicator was used, indicated that the different modes of ampicillin administration led 

immediately (day one of treatment) to a large increase in the level of ampicillin resistance in 

the fecal microflora. In addition, the results suggested that the quantitative PCR of fecal 

blaTEM genes might be a promising tool to quantify the digestive reservoir of blaTEM genes and 

evaluate the impact of �-lactam administration on the selection of ampicillin resistance in the 

gut microflora. 

Antibiotic impact on the gut microflora is generally measured by phenotypic 

evaluation of antibiotic resistance on a limited bacterial population, either using isolates of 

indicator bacteria or families of bacteria. E. coli and Enterobacteriaceae are good candidates 

for studies of the antibiotic resistance level of the fecal flora and are commonly used for this 

in pigs (32). These bacteria are easily culturable and their isolation is facilitated by specific 

culture media. In the present experiment, results obtained with the two phenotypic indicators 

of ampicillin resistance implied that all treatments had a similar negative impact on the gut 

microflora with the emergence of a high level of resistance at all three dosage regimens. 

These results are consistent with those of previous studies demonstrating that ampicillin 

treatment could have a marked effect on the level of resistance in intestinal microbiota of 

several species (9, 21, 33). Nevertheless, the phenotypic indicators commonly used to assess 

antibiotic resistance exhibit methodological features that impact both their metrological 

performances and relevance. Firstly, the selected indicator bacteria must be cultured and the 

reliability of results has been questioned due to considerable variation originating from the 
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culture medium, bacterial inoculum, antibiotic preparation and incubation conditions (26). 

Secondly, the isolates might not be representative of the whole population of bacteria (6). 

These limits impair the sensitivity and precision of phenotypic indicators for the assessment 

of resistance levels and have prompted investigators to develop molecular techniques as 

alternatives, in particular quantitative PCR (15, 20, 31, 39). 

Molecular techniques can be used to reveal the presence of genetic determinants without 

bacterial cultivation and irrespective of  the bacterial species carrying these genetic 

determinants (5, 35). However, a requisite to this approach is the knowledge of the underlying 

resistance mechanisms, and when few genes are involved in resistance, they may provide 

candidates for resistance markers (3). blaTEM genes code for the most commonly encountered 

�-lactamases in Gram-negative bacteria (24).  We therefore developed and validated a real-

time PCR assay to quantify blaTEM genes in swine feces. This PCR assay was suitable for 

quantification of blaTEM genes from 104 to 109 copies/g of feces. 

Examination of the agreement between resistant Enterobacteriaceae counts and blaTEM 

concentrations revealed a significant correlation between the quantities of blaTEM genes and 

the counts of ampicillin-resistant Enterobacteriaceae. The observed scatter is probably due 

partly to the inaccuracy of both techniques and to the fact that amplified blaTEM genes may be 

harbored by bacteria other than Enterobacteriaceae (16).  

During our experiment to monitor blaTEM genes excretion, we found that treated pigs 

excreted more blaTEM genes than control pigs. Moreover, as in the phenotypic evaluations, the 

fecal excretion of blaTEM genes showed large individual day-to-day fluctuations. As indicated 

above, these fluctuations were correlated with counts of ampicillin-resistant 

Enterobacteriaceae.  Similarly, Belloc et al. (2) studied the effect of quinolone treatment on 

selection and persistence of quinolone-resistant E. coli in swine fecal flora and observed great 

variability both in the percentage of resistant strains and pattern of emergence of resistance. In 
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the present study, despite the great variability and the small number of pigs per mode of 

treatment, at least two of the three modes of drug administration (i.e. intramuscular route and 

oral route in fed pigs) could be differentiated by quantifying the bla
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TEM genes excreted in 

feces, but not by phenotypic evaluation. These results imply that a genotypic indicator can be 

used advantageously as a complement to phenotypic approaches to quantitatively evaluate the 

intestinal reservoir of resistance genes. For example, blaTEM genes quantification has already 

been used to evaluate ampicillin-induced selective pressure on the gut microbiota in dogs 

(15). 

Our results, showing that oral administration of ampicillin in fed pigs was associated 

with the highest excretion level of fecal blaTEM genes, are consistent with both our 

pharmacokinetic measurements (not shown) and published data. These latter indicate that �-

lactam absorption following oral administration is largely incomplete in pigs (1, 17) and that 

feeding decreases �-lactam absorption in pigs as in dogs (18) and humans (36). As a 

consequence, these expected high concentrations of unabsorbed ampicillin in the intestine are 

likely to exert great pressure on the gut microflora, and this all the more if ampicillin is 

administered to fed pigs. Following intramuscular administration, ampicillin can gain access 

to the gastrointestinal lumen by biliary excretion (12), which explains why the intramuscular 

route was also associated with an increase in fecal blaTEM genes excretion. Thus the 

pharmacokinetic profiles of the three modes of ampicillin administration tested in the present 

study were apparently different and resulted in different intestinal exposures. 

In conclusion, our study indicates that fecal blaTEM genes quantification might be a 

useful tool to evaluate and discriminate the impact of different modes of ampicillin 

administration on the gut microflora. In the future, this quantitative tool might help to 

quantify the flux of resistance genes in epidemiological investigations. 
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FIG. 1. Standard curves calculated with the control plasmid diluted in Tris -EDTA buffer (�) 

or in DNA extracted from swine feces (�). Amplification was repeated four times for each 

dilution. 

 

FIG. 2. a) Percentage of ampicillin resistant Enterobacteriaceae for each mode of ampicillin 

administration. These percentages were calculated from the total counts of 

Enterobacteriaceae in the absence or presence of ampicillin (16 μg/mL). b) Percentage of 

ampicillin-resistant E. coli (i.e. with MIC above 16 μg/mL), for each mode of ampicillin 

administration. Ampicillin susceptibility was tested at each sampling point on 20 isolates 

from each pig. Treated pigs had received ampicillin at 20 mg/kg from day 0 to day 6 by 

intramuscular route (�) (n=4), oral route in fasted (	) (n=4) or fed (
) (n=4) pigs. 6 pigs 

were used as a control (�). Values are means and error bars represent standard deviations. 

 

FIG. 3. Copy number of blaTEM genes per g of feces detected by real-time PCR for each pig. 

Ampicillin was administered at 20 mg/kg from day 0 to day 6. Modes of administration were: 

a) oral route in fed pigs (n=4), b) oral route in fasted pigs (n=4), c) intramuscular route (n=4). 

d) 6 pigs were used as a control.  

 

FIG. 4. Copy number of blaTEM genes per g of feces for each mode of ampicillin 

administration. Treated pigs had received ampicillin at 20 mg/kg from day 0 to day 6 by 

intramuscular route (�) (n=4), oral route in fasted (	) (n=4) or fed (
) (n=4) pigs. 6 pigs 

were used as a control (�). Values are means and error bars represent standard deviations. 
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FIG. 5.  Relationship between the log of the blaTEM copy number/g feces and the log of counts 

of ampicillin-resistant Enterobacteriaceae /g of feces.  
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