51 research outputs found
A Monoclonal Antibody against p53 Cross-Reacts with Processing Bodies
The p53 tumor suppressor protein is an important regulator of cell proliferation and apoptosis. p53 can be found in the nucleus and in the cytosol, and the subcellular location is key to control p53 function. In this work, we found that a widely used monoclonal antibody against p53, termed Pab 1801 (Pan antibody 1801) yields a remarkable punctate signal in the cytoplasm of several cell lines of human origin. Surprisingly, these puncta were also observed in two independent p53-null cell lines. Moreover, the foci stained with the Pab 1801 were present in rat cells, although Pab 1801 recognizes an epitope that is not conserved in rodent p53. In contrast, the Pab 1801 nuclear staining corresponded to genuine p53, as it was upregulated by p53-stimulating drugs and absent in p53-null cells. We identified the Pab 1801 cytoplasmic puncta as P Bodies (PBs), which are involved in mRNA regulation. We found that, in several cell lines, including U2OS, WI38, SK-N-SH and HCT116, the Pab 1801 puncta strictly colocalize with PBs identified with specific antibodies against the PB components Hedls, Dcp1a, Xrn1 or Rck/p54. PBs are highly dynamic and accordingly, the Pab 1801 puncta vanished when PBs dissolved upon treatment with cycloheximide, a drug that causes polysome stabilization and PB disruption. In addition, the knockdown of specific PB components that affect PB integrity simultaneously caused PB dissolution and the disappearance of the Pab 1801 puncta. Our results reveal a strong cross-reactivity of the Pab 1801 with unknown PB component(s). This was observed upon distinct immunostaining protocols, thus meaning a major limitation on the use of this antibody for p53 imaging in the cytoplasm of most cell types of human or rodent origin
Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells
Chemotherapy in patients with inoperable or advanced breast cancer inevitably results in low-dose exposure of tumor-cell subset and senescence. Metabolically active senescent cells secrete multiple tumor promoting factors making their elimination a therapeutic priority. Viscum album is one of the most widely used alternative anti-cancer medicines facilitating chemotherapy tolerance of breast cancer patients. The aim of this study was to model and investigate how Viscum album extracts execute additive anti-tumor activity with low-dose Dox using ER + MCF7 breast cancer cells. We report that cotreatment of MCF7 with Viscum album and Dox abrogates G2/M cycle arrest replacing senescence with intrinsic apoptotic program. Mechanistically, this switch was associated with down-regulation of p21, p53/p73 as well as Erk1/2 and p38 activation. Our findings, therefore, identify a novel mechanistic axis of additive antitumor activity of Viscum album and low dose-Dox. In conclusion, ER + breast cancer patients may benefit from addition of Viscum album to low-dose Dox chemotherapy due to suppression of cancer cell senescence and induction of apoptosis
Retinoblastoma Loss Modulates DNA Damage Response Favoring Tumor Progression
Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRasV12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies
Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence
Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence
Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease
- …