381 research outputs found

    The Lipid Transfer Protein CERT Interacts with the Chlamydia Inclusion Protein IncD and Participates to ER-Chlamydia Inclusion Membrane Contact Sites

    Get PDF
    Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development

    Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing

    Get PDF
    The Arabidopsis ARGONAUTE1 (AGO1) and ZWILLE/PINHEAD/AGO10 (ZLL) proteins act in the miRNA and siRNA pathways and are essential for multiple processes in development. Here, we analyze what determines common and specific function of both proteins. Analysis of ago1 mutants with partially compromised AGO1 activity revealed that loss of ZLL function re-establishes both siRNA and miRNA pathways for a subset of AGO1 target genes. Loss of ZLL function in ago1 mutants led to increased AGO1 protein levels, whereas AGO1 mRNA levels were unchanged, implicating ZLL as a negative regulator of AGO1 at the protein level. Since ZLL, unlike AGO1, is not subjected to small RNA-mediated repression itself, this cross regulation has the potential to adjust RNA silencing activity independent of feedback dynamics. Although AGO1 is expressed in a broader pattern than ZLL, expression of AGO1 from the ZLL promoter restored transgene PTGS and most developmental defects of ago1, whereas ZLL rescued only a few AGO1 functions when expressed from the AGO1 promoter, suggesting that the specific functions of AGO1 and ZLL are mainly determined by their protein sequence. Protein domain swapping experiments revealed that the PAZ domain, which in AGO1 is involved in binding small RNAs, is interchangeable between both proteins, suggesting that this common small RNA-binding domain contributes to redundant functions. By contrast, the conserved MID and PIWI domains, which are involved in 5′-end small RNA selectivity and mRNA cleavage, and the non-conserved N-terminal domain, to which no function has been assigned, provide specificity to AGO1 and ZLL protein function

    Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma

    Get PDF
    BACKGROUND: Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. METHODOLOGY/PRINCIPAL FINDINGS: A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0 degrees C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. CONCLUSIONS/SIGNIFICANCE: The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation

    Site-specific time heterogeneity of the substitution process and its impact on phylogenetic inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Model violations constitute the major limitation in inferring accurate phylogenies. Characterizing properties of the data that are not being correctly handled by current models is therefore of prime importance. One of the properties of protein evolution is the variation of the relative rate of substitutions across sites and over time, the latter is the phenomenon called heterotachy. Its effect on phylogenetic inference has recently obtained considerable attention, which led to the development of new models of sequence evolution. However, thus far focus has been on the quantitative heterogeneity of the evolutionary process, thereby overlooking more qualitative variations.</p> <p>Results</p> <p>We studied the importance of variation of the site-specific amino-acid substitution process over time and its possible impact on phylogenetic inference. We used the CAT model to define an infinite mixture of substitution processes characterized by equilibrium frequencies over the twenty amino acids, a useful proxy for qualitatively estimating the evolutionary process. Using two large datasets, we show that qualitative changes in site-specific substitution properties over time occurred significantly. To test whether this unaccounted qualitative variation can lead to an erroneous phylogenetic tree, we analyzed a concatenation of mitochondrial proteins in which Cnidaria and Porifera were erroneously grouped. The progressive removal of the sites with the most heterogeneous CAT profiles across clades led to the recovery of the monophyly of Eumetazoa (Cnidaria+Bilateria), suggesting that this heterogeneity can negatively influence phylogenetic inference.</p> <p>Conclusion</p> <p>The time-heterogeneity of the amino-acid replacement process is therefore an important evolutionary aspect that should be incorporated in future models of sequence change.</p

    Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/− Mouse Model

    Get PDF
    BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression

    Quality Indicators for Colonoscopy Procedures: A Prospective Multicentre Method for Endoscopy Units

    Get PDF
    BACKGROUND AND AIMS: Healthcare professionals are required to conduct quality control of endoscopy procedures, and yet there is no standardised method for assessing quality. The topic of the present study was to validate the applicability of the procedure in daily practice, giving physicians the ability to define areas for continuous quality improvement. METHODS: In ten endoscopy units in France, 200 patients per centre undergoing colonoscopy were enrolled in the study. An evaluation was carried out based on a prospectively developed checklist of 10 quality-control indicators including five dependent upon and five independent of the colonoscopy procedure. RESULTS: Of the 2000 procedures, 30% were done at general hospitals, 20% at university hospitals, and 50% in private practices. The colonoscopies were carried out for a valid indication for 95.9% (range 92.5-100). Colon preparation was insufficient in 3.7% (range 1-10.5). Colonoscopies were successful in 95.3% (range 81-99). Adenoma detection rate was 0.31 (range 0.17-0.45) in successful colonoscopies. CONCLUSION: This tool for evaluating the quality of colonoscopy procedures in healthcare units is based on standard endoscopy and patient criteria. It is an easy and feasible procedure giving the ability to detect suboptimal practice and differences between endoscopy-units. It will enable individual units to assess the quality of their colonoscopy techniques

    Superior antigen-specific CD4+ T-cell response with AS03-adjuvantation of a trivalent influenza vaccine in a randomised trial of adults aged 65 and older

    Get PDF
    BACKGROUND: The effectiveness of trivalent influenza vaccines may be reduced in older versus younger adults because of age-related immunosenescence. The use of an adjuvant in such a vaccine is one strategy that may combat immunosenescence, potentially by bolstering T-cell mediated responses. METHODS: This observer-blind study, conducted in the United States (US) and Spain during the 2008-2009 influenza season, evaluated the effect of Adjuvant System AS03 on specific T-cell responses to a seasonal trivalent influenza vaccine (TIV) in >/=65 year-old adults.Medically-stable adults aged >/=65 years were randomly allocated to receive a single dose of AS03-adjuvanted TIV (TIV/AS03) or TIV. Healthy adults aged 18-40 years received only TIV. Blood samples were collected on Day 0, Day 21, Day 42 and Day 180. Influenza-specific CD4+ T cells, defined by the induction of the immune markers CD40L, IL-2, IFN-gamma, or TNF-alpha, were measured in ex vivo cultures of antigen-stimulated peripheral blood mononuclear cells. RESULTS: A total of 192 adults were vaccinated: sixty nine and seventy three >/=65 year olds received TIV/AS03 and TIV, respectively; and fifty 18 - 40 year olds received TIV. In the >/=65 year-old group on Day 21, the frequency of CD4+ T cells specific to the three vaccine strains was superior in the TIV/AS03 recipients to the frequency in TIV (p /=65 year-old recipients of TIV/AS03 than in the 18 - 40 year old recipients of TIV on Days 21 (p = 0.006) and 42 (p = 0.011). CONCLUSION: This positive effect of AS03 Adjuvant System on the CD4+ T-cell response to influenza vaccine strains in older adults could confer benefit in protection against clinical influenza disease in this population. TRIAL REGISTRATION: (Clinicaltrials.gov.). NCT00765076

    Prions in Milk from Ewes Incubating Natural Scrapie

    Get PDF
    Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 µg of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species
    • …
    corecore