594 research outputs found

    Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Get PDF
    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques

    Xyloglucan is released by plants and promotes soil particle aggregation.

    Get PDF
    Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land

    Heterozygote Advantage for Fecundity

    Get PDF
    Heterozygote advantage, or overdominance, remains a popular and persuasive explanation for the maintenance of genetic variation in natural populations in the face of selection. However, despite being first proposed more than 80 years ago, there remain few examples that fit the criteria for heterozygote advantage, all of which are associated with disease resistance and are maintained only in the presence of disease or other gene-by-environment interaction. Here we report five new examples of heterozygote advantage, based around polymorphisms in the BMP15 and GDF9 genes that affect female fecundity in domesticated sheep and are not reliant on disease for their maintenance. Five separate mutations in these members of the transforming growth factor β (TGFβ) superfamily give phenotypes with fitness differentials characteristic of heterozygous advantage. In each case, one copy of the mutant allele increases ovulation rate, and ultimately litter size per ewe lambing, relative to the wildtype. However, homozygous ewes inheriting mutant alleles from both parents have impaired oocyte development and maturation, which results in small undeveloped ovaries and infertility. Using data collected over many years on ovulation rates, litter size, and lambing rates, we have calculated the equilibrium solution for each of these polymorphisms using standard population genetic theory. The predicted equilibrium frequencies obtained for these mutant alleles range from 0.11 to 0.23, which are amongst the highest yet reported for a polymorphism maintained by heterozygote advantage. These are amongst the most frequent and compelling examples of heterozygote advantage yet described and the first documented examples of heterozygote advantage that are not reliant on a disease interaction for their maintenance

    Plastic contamination of a Galapagos Island (Ecuador) and the relative risks to native marine species

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data can be downloaded via the following DOI (https://doi.org/10.5061/dryad.dbrv15f1f).Ecuador's Galapagos Islands and their unique biodiversity are a global conservation priority. We explored the presence, composition and environmental drivers of plastic contamination across the marine ecosystem at an island scale, investigated uptake in marine invertebrates and designed a systematic priority scoring analysis to identify the most vulnerable vertebrate species. Beach contamination varied by site (macroplastic 0-0.66 items·m-2, microplastics 0-448.8 particles·m-2 or 0-74.6 particles·kg-1), with high plastic accumulation on east-facing beaches that are influenced by the Humboldt Current. Local littering and waste management leakages accounted for just 2% of macroplastic. Microplastics (including anthropogenic cellulosics) were ubiquitous but in low concentrations in benthic sediments (6.7-86.7 particles·kg-1) and surface seawater (0.04-0.89 particles·m-3), with elevated concentrations in the harbour suggesting some local input. Microplastics were present in all seven marine invertebrate species examined, found in 52% of individuals (n = 123) confirming uptake of microplastics in the Galapagos marine food web. Priority scoring analysis combining species distribution information, IUCN Red List conservation status and literature evidence of harm from entanglement and ingestion of plastics in similar species identified 27 marine vertebrates in need of urgent, targeted monitoring and mitigation including pinnipeds, seabirds, turtles and sharks.Galapagos Conservation TrustWoodspring TrustRoyal Geographical SocietyNatural Environment Research Council (NERC

    Nitrogenase Gene Amplicons from Global Marine Surface Waters Are Dominated by Genes of Non-Cyanobacteria

    Get PDF
    Cyanobacteria are thought to be the main N2-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III) were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant

    Shaping black holes with free fields

    Get PDF
    Starting from a metric Ansatz permitting a weak version of Birkhoff's theorem we find static black hole solutions including matter in the form of free scalar and p-form fields, with and without a cosmological constant \Lambda. Single p-form matter fields permit multiple possibilities, including dyonic solutions, self-dual instantons and metrics with Einstein-Kaelher horizons. The inclusion of multiple p-forms on the other hand, arranged in a homogeneous fashion with respect to the horizon geometry, permits the construction of higher dimensional dyonic p-form black holes and four dimensional axionic black holes with flat horizons, when \Lambda<0. It is found that axionic fields regularize black hole solutions in the sense, for example, of permitting regular -- rather than singular -- small mass Reissner-Nordstrom type black holes. Their cosmic string and Vaidya versions are also obtained.Comment: 38 pages. v2: minor changes, published versio

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Magnetic Coupling in the Quiet Solar Atmosphere

    Full text link
    Three kinds of magnetic couplings in the quiet solar atmosphere are highlighted and discussed, all fundamentally connected to the Lorentz force. First the coupling of the convecting and overshooting fluid in the surface layers of the Sun with the magnetic field. Here, the plasma motion provides the dominant force, which shapes the magnetic field and drives the surface dynamo. Progress in the understanding of the horizontal magnetic field is summarized and discussed. Second, the coupling between acoustic waves and the magnetic field, in particular the phenomenon of wave conversion and wave refraction. It is described how measurements of wave travel times in the atmosphere can provide information about the topography of the wave conversion zone, i.e., the surface of equal Alfv\'en and sound speed. In quiet regions, this surface separates a highly dynamic magnetic field with fast moving magnetosonic waves and shocks around and above it from the more slowly evolving field of high-beta plasma below it. Third, the magnetic field also couples to the radiation field, which leads to radiative flux channeling and increased anisotropy in the radiation field. It is shown how faculae can be understood in terms of this effect. The article starts with an introduction to the magnetic field of the quiet Sun in the light of new results from the Hinode space observatory and with a brief survey of measurements of the turbulent magnetic field with the help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
    corecore